RESEARCH OF TRAFFIC PREDICTION ACCURACY INFLUENCE ON THE EFFECTIVENESS OF TRAINS BREAKING-UP ORDER CONTROL

Publications

Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics, Transportation, Transportation Science & Technology

GET ALERTS

ISSN: 1896-0596
eISSN: 2300-861X

DESCRIPTION

0
Reader(s)
0
Visit(s)

Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 12 , ISSUE 1 (March 2017) > List of articles

RESEARCH OF TRAFFIC PREDICTION ACCURACY INFLUENCE ON THE EFFECTIVENESS OF TRAINS BREAKING-UP ORDER CONTROL

Oleksandr BARDAS / Ihor SKOVRON / Yevhen DEMCHENKO / Andrii DOROSH

Keywords : trains breaking-up order control, railway traffic forecasting, stochastic programming

Citation Information : Transport Problems. Volume 12, Issue 1, Pages 151-158, DOI: https://doi.org/10.20858/tp.2017.12.14

License : (CC BY 4.0)

Received Date : 30-September-2015 / Accepted: 10-February-2017 / Published Online: 30-March-2017

ARTICLE

ABSTRACT

Summary. The article presents the research results of economic feasibility of trains’ breaking-up order control at marshalling yards. The article objective was to determine the area of rational use of trains’ breaking-up order model, formalized in the form of stochastic programming problem. As a effectiveness criterion of trains’ breaking-up order operating costs of marshalling yard were used, including the costs associated with cars’ and locomotives’ dwell time on the station and its approaches, as well as costs associated with additional shunting work. With the help of simulation modeling the dependence was obtained, describing the impact of trains’ arrival forecasting error and processed car volumes on reducing operating costs of the marshalling yards through the trains’ breaking-up order control. The studies enable us to establish the requirements for the accuracy of information support of operational planning tasks, which is necessary to achieve the desired economic effect of the trains’ breaking-up order control.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

  1. Worrell, C. Automating the industry, one yard at a time. Railway age. 2015. No. 11. P. 36–38.
  2. Stagl, J. Class Is tap technology to ensure the right car is on the right train well before the train-building stage. Progressive railroading. 2007. No. 6. P. 36, 38.
    [CROSSREF]
  3. Vantuono, W. Fast-in, fast-out. Railway age. 2011. No. 8. P. 21, 24, 26–27, 34.
  4. Stagl, J. Suppliers aim to provide hump yard automation systems to help railroads handle more freight cars in less time. Progressive railroading. 2009. No. 5. P. 24–30.
  5. Dirnberger, J.R. & Barkan, C. Improving railroad classification yard performance through bottleneck management methods. Proceedings of the AREMA 2006 Annual Conference. Louisville, Kentucky. September, 2006. 33 p.
    [CROSSREF]
  6. Dirnberger, J.R. & Barkan, C.P.L. Lean railroading for improving railroad classification terminal performance bottleneck management methods. Transportation Research Record: Journal of the Transportation Research Board. No. 1995. Transportation Research Board of the National Academies. Washington, D.C. 2007. P. 52–61.
    [CROSSREF]
  7. Лаврухін, О.В. Розробка моделі підтримки прийняття рішень на залізничному транспорті. Наука та прогрес транспорту. Вісник Дніпропетровського національного університету залізничного транспорту імені академіка В. Лазаряна. 2006. No. 11. P. 84-86. [In Ukrainian: Lavrukhin, O.V. Development decision support model for railway transport. Science and Progress of transport. Bulletin of Dnipropetrovsk National University of railway transport named after Academician V. Lazaryan].
    [CROSSREF]
  8. Лаврухин, А.В. Формирование интеллектуальной модели функционирования железнодорожной станции при выполнении поездной работы. Наука та прогрес транспорту Вісник Дніпропетровського національного університету залізничного транспорту імені академіка В. Лазаряна. 2015. No 1(55). P. 43-53. [In Russian: Lavrukhin, A.V. Formation of intellectual functioning model of the railway station when the train operation. Science and Progress of transport. Bulletin of Dnipropetrovsk National University of railway transport named after Academician V. Lazaryan].
    [CROSSREF]
  9. Kraft, E.R. A Hump sequencing algorithm for real time management of train connection reliability. Journal of the Transportation Research Forum. 2000. Vol. 39. No. 4. P. 95–115.
  10. Li, H. & He, S. & Guo, X. Sequences optimization and capacity analysis of railway hump yard. In: Proceedings of 12-th Annual Conference of China Industrial Technology Association of Economics & Management Institutes and the First International Conference on Management, Innovation & Development. 2014. P. 435–440.
  11. Li, H. & Jinc, M. & He, S. Sequencing and Scheduling in Railway Classification Yards. Transportation Research Record: Journal of the Transportation Research Board. 2015. Vol. 1. No. 2475. Transportation Research Board of the National Academies. Washington, D.C. P. 72–80.
    [CROSSREF]
  12. Бардась, А.А. Усовершенствование планирования процессов расформирования составов с учетом оперативных данных автоматизированных систем управления грузовыми перевозками. Наука та прогрес транспорту. Вісник Дніпропетровського національного університету залізничного транспорту імені академіка В. Лазаряна. 2008. No. 24. P. 150-152. [In Russian: Bardas, A.A. Improving planning processes of trains breaking-up based on operational data of automated freight management systems Science and Progress of transport. Bulletin of Dnipropetrovsk National University of railway transport named after Academician V. Lazaryan].
    [CROSSREF]
  13. Вернигора, Р.В. & Єльнікова, Л.О. Дослідження можливості використання штучних нейронних мереж при прогнозуванні поїзної роботи залізничних напрямків. Збірник наукових праць Дніпропетровського національного університету залізничного транспорту імені академіка В. Лазаряна. Транспортні системи та технології перевезень. 2014. No. 7. P. 5-19. [In Ukrainian: Vernyhora, R.V. & Yelnikova, L.O. Research the possibility of using artificial neural networks in predicting train of railway lines. Сollection of research papers of Dnipropetrovsk National University of railway transport named after Academician V. Lazaryan. Transport systems and transportation technologies].
    [CROSSREF]
  14. Мозолевич, Г.Я. Моделювання руху поїздів на залізничних напрямках. In: 71 Ukrainian scientific-technical conference of young scientists. Dnipropetrovsk National University of railway transport named after Academician V. Lazaryan. 2011. P. 4-5. [In Ukrainian: Modelling of trains on the railway areas].
    [CROSSREF]
  15. Скалозуб, В.В. & Бардась, О.О. Удосконалення методів вибору черговості розпуску составів на сортувальній станції. Збірник наукових праць Донецького інституту залізничного транспорту Української державної академії залізничного транспорту. 2010. No. 24. P. 46-52. [In Ukrainian: Skalozub, V.V. & Bardas, O.O. Improved methods of trainsbreaking-up order choice in classification yard. Collection of science papers of Donetsk Institute of railway transport of Ukrainian State Academy of railway transport].
    [CROSSREF]
  16. Ермольев, Ю.М. Математические методы исследования операций. Киев: Вища школа. 1979. 302 p. [In Russian: Ermoliev, Y.M. Mathematical methods of operations research. Kiev: Higher school].
  17. Rotoli, F. & Ricci, S. & Cawood E.N. & Malavasi, G. Capacity versus punctuality assessment measure for rail network. Ingegneria Ferroviaria. 2015. Vol. LXX. No. 12. P. 1011-1040.
    [CROSSREF]

EXTRA FILES

COMMENTS