Structural Changes of Bacillus subtilis Biomass on Biosorption of Iron (II) from Aqueous Solutions: Isotherm and Kinetic Studies

Publications

Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology

GET ALERTS

ISSN: 1733-1331
eISSN: 2544-4646

DESCRIPTION

0
Reader(s)
0
Visit(s)

Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 68 , ISSUE 4 (Jan 2019) > List of articles

Structural Changes of Bacillus subtilis Biomass on Biosorption of Iron (II) from Aqueous Solutions: Isotherm and Kinetic Studies

SRI LAKSHMI RAMYA KRISHNA KANAMARLAPUDI / SUDHAMANI MUDDADA *

Keywords : Bacillus subtilis, biosorption, iron, isotherms, kinetics

Citation Information : Polish Journal of Microbiology. Volume 68, Issue 4, Pages 549-558, DOI: https://doi.org/10.33073/pjm-2019-057

License : (CC-BY-NC-ND 4.0)

Published Online: 05-December-2019

ARTICLE

ABSTRACT

Content not available XML PDF Share

FIGURES & TABLES

Fig. 1.

Effect of initial concentration on biosorption of Fe (II) by Bacillus subtilis at a biomass concentration of 1 g/l, pH 4.5, and 100 rpm.

Full Size   |   Slide (.pptx)

Fig. 2.

Effect of contact time on biosorption Fe (II) by Bacillus subtilis at a biomass concentration of 1 g/l, pH 4.5, 20 mg/l of Fe (II) and 100 rpm.

Full Size   |   Slide (.pptx)

Fig. 3.

Effect of biosorbent dose on biosorption Fe (II) by Bacillus subtilis at initial metal ion concentration of 20 mg/l, pH 4.5, and 100 rpm.

Full Size   |   Slide (.pptx)

Fig. 4.

SEM image, EDX spectra and elemental composition of unloaded (control) biomass of B. subtilis.

Full Size   |   Slide (.pptx)

Fig. 5.

SEM image, EDX spectra and elemental composition of B. subtilis biosorbed with Fe (II) ions.

Full Size   |   Slide (.pptx)

Fig. 6a.

FTIR spectra of unloaded (control) biomass of B. subtilis.

Full Size   |   Slide (.pptx)

Fig. 6b.

FTIR spectra of Fe (II) ion biosorbed by B. subtilis biomass.

Full Size   |   Slide (.pptx)

Fig. 7a.

X-ray diffraction pattern of B. subtilis before biosorption with Fe (II) ions.

Full Size   |   Slide (.pptx)

Fig. 7b.

X-ray diffraction pattern of B. subtilis after biosorption with Fe (II) ions.

Full Size   |   Slide (.pptx)

Fig. 8.

Point zero charge (pHpzc) of B. subtilis.

Full Size   |   Slide (.pptx)

REFERENCES

  1. Ahad RIA, Goswami S, Syiem MB. Biosorption and equilibrium isotherms study of cadmium removal by Nostoc muscorum Meg 1: morphological, physiological and biochemical alterations. 3 Biotech. 2017;7(2):104.
    [PUBMED] [CROSSREF]
  2. Al‐Gheethi A, Mohamed R, Noman E, Ismail N, Kadir OA. Removal of heavy metal ions from aqueous solutions using Bacillus subtilis biomass pre‐treated by supercritical carbon dioxide. CLEAN-Soil, Air. Water. 2017;45(10):1700356.
  3. Anuradha R Mulik, Preeti Kulkarni, Bhadekar RK. Biosorption studies on nickel and chromium by Kocuria sp. BRI 36 Biomass. Int J Appl Eng Res. 2018;13(9):6886–6893.
  4. Aravind J, George LE, Kanmani P, Muthukumaran M. Bio sorption of chromium using A. towneri and R. eutropha. Res Biotechnol. 2015;6(3):01–09.
  5. Arbanah M, Najwa MM, Halim KK. Biosorption of Cr (III), Fe (II), Cu (II), Zn (II) ions from liquid laboratory chemical waste by Pleurotus ostreatus. Int J Biotechnol Wellness Ind. 2012; 1(3):152–162. doi:10.6000/1927-3037/2012.01.03.01
  6. Banerjee A, Sarkar P, Banerjee S. Application of statistical design of experiments for optimization of As(V) biosorption by immobilized bacterial biomass. Ecol Eng. 2016 Jan;86:13–23. doi:10.1016/j.ecoleng.2015.10.015
    [CROSSREF]
  7. Bhattacharya PT, Misra SR, Hussain M. Nutritional aspects of essential trace elements in oral health and disease: an extensive review. Scientifica (Cairo). 2016;2016:1–12. doi:10.1155/2016/5464373
    [CROSSREF]
  8. Cai Y, Li X, Liu D, Xu C, Ai Y, Sun X, Zhang M, Gao Y, Zhang Y, Yang T, et al. A Novel Pb-resistant Bacillus subtilis bacterium isolate for co-biosorption of hazardous Sb (III) and Pb (II): thermodynamics and application strategy. Int J Environ Res Public Health. 2018 Apr 09;15(4):702. doi:10.3390/ijerph15040702
    [CROSSREF]
  9. Christobel J, Lipton A. Evaluation of macroalgal biomass for removal of heavy metal arsenic (As) from aqueous solution. Int J Appl Innov Eng Manag. 2015;4(5):94–104.
  10. Dey U, Chatterjee S, Mondal NK. Isolation and characterization of arsenic-resistant bacteria and possible application in bioremediation. Biotechnol Rep (Amst). 2016 Jun;10:1–7. doi:10.1016/j.btre.2016.02.002
    [PUBMED] [CROSSREF]
  11. Dhanwal P, Kumar A, Dudeja S, Badgujar H, Chauhan R, Kumar A, Dhull P, Chhokar V, Beniwal V. Biosorption of heavy metals from aqueous solution by bacteria isolated from contaminated soil. Water Environ Res. 2018 May 01;90(5):424–430. doi:10.2175/106143017X15131012152979
    [PUBMED] [CROSSREF]
  12. Dueik V, Chen BK, Diosady LL. Iron-polyphenol interaction reduces iron bioavailability in fortified tea: competing complexation to ensure iron bioavailability. J Food Qual. 2017;2017:1–7. doi:10.1155/2017/1805047
    [CROSSREF]
  13. El-Naggar NEA, Hamouda RA, Mousa IE, Abdel-Hamid MS, Rabei NH. Biosorption optimization, characterization, immobilization and application of Gelidium amansii biomass for complete Pb2+ removal from aqueous solutions. Sci Rep. 2018 Dec;8(1):13456. doi:10.1038/s41598-018-31660-7
  14. Farnane M, Machrouhi A, Elhalil A, Abdennouri M, Qourzal S, Tounsadi H, Barka N. New sustainable biosorbent based on recycled deoiled carob seeds: optimization of heavy metals remediation. J Chem. 2018 Oct 09;2018:1–16. doi:10.1155/2018/5748493
    [CROSSREF]
  15. García R, Campos J, Cruz JA, Calderón ME, Raynal ME, Buitrón. Biosorption of Cd, Cr, Mn, and Pb from aqueous solutions by Bacillus sp. strains isolated from industrial waste activate sludge. TIP. 2016 Jan;19(1):5–14. doi:10.1016/j.recqb.2016.02.001
    [CROSSREF]
  16. Hanbali M, Holail H, Hammud H. Remediation of lead by pretreated red algae: adsorption isotherm, kinetic, column modeling and simulation studies. Green Chem Lett Rev. 2014 Oct 02;7(4):342–358. doi:10.1080/17518253.2014.955062
    [CROSSREF]
  17. Huang H, Zhao Y, Xu Z, Ding Y, Zhang W, Wu L. Biosorption characteristics of a highly Mn(II)-resistant Ralstonia pickettii strain isolated from Mn ore. PLoS One. 2018 Aug 31;13(8):e0203285. doi:10.1371/journal.pone.0203285
    [PUBMED] [CROSSREF]
  18. Iheanacho EU, Ndulaka J, Onuh C. Environmental pollution and heavy metals. Environ Pollut. 2017;5(5):2321–9122.
  19. Kariuki Z, Kiptoo J, Onyancha D. Biosorption studies of lead and copper using rogers mushroom biomass ‘Lepiota hystrix’. South Af J Chem Eng. 2017;23:62–70.
  20. Keshtkar M, Dobaradaran S, Akbarzadeh S, Bahreini M, Abadi DRV, Nasab SG, Soleimani F, Khajeahmadi N, Baghmolaei M. Iron biosorption from aqueous solution by Padina sanctae crucis algae: isotherm, kinetic and modeling. Int J Pharm Technol. 2016; 1:10459–10471.
  21. Puri A, Kumar M. A review of permissible limits of drinking water. Indian J Occup Environ Med. 2012;16(1):40–44. doi:10.4103/0019-5278.99696
    [PUBMED] [CROSSREF]
  22. Migahed F, Abdelrazak A, Fawzy G. Batch and continuous removal of heavy metals from industrial effluents using microbial consortia. Int J Environ Sci Technol. 2017 Jun;14(6):1169–1180. doi:10.1007/s13762-016-1229-3
    [CROSSREF]
  23. Ng W. Surface charge characteristics of Bacillus subtilis NRS-762 cells. Peer J Preprints. 2018;6:e26626v1.
  24. Prashanth L, Kattapagari KK, Chitturi RT, Baddam VRR, Prasad LK. A review on role of essential trace elements in health and disease. J Dr NTR Univ Health Sci. 2015;4(2):75–85. doi:10.4103/2277-8632.158577
    [CROSSREF]
  25. Qu J, Zang T, Gu H, Li K, Hu Y, Ren G, Xu X, Jin Y. Biosorption of copper ions from aqueous solution by Flammulina velutipes spent substrate. BioResources. 2015 Oct 16;10(4):8058–8075. doi:10.15376/biores.10.4.8058-8075
  26. Ramyakrishna K, Sudhamani M. The metal binding potential of a dairy isolate. J Water Reuse Desalin. 2017 Dec;7(4):429–441. doi:10.2166/wrd.2016.127
    [CROSSREF]
  27. Renu NA, Agarwal M, Singh K. Methodologies for removal of heavy metal ions from wastewater: an overview. Interdiscip Environ Rev. 2017;18(2):124–142. doi:10.1504/IER.2017.087915
    [CROSSREF]
  28. Safari M, Ahmady-Asbchin S. Biosorption of zinc from aqueous solution by cyanobacterium Fischerella ambigua ISC67: optimization, kinetic, isotherm and thermodynamic studies. Water Sci Technol. 2018 Oct 15;78(7):1525–1534. doi:10.2166/wst.2018.437
    [PUBMED]
  29. Santuraki AH, Muazu AA. Accessing the potential of Lonchocarpus laxiflorus roots (LLR) plant biomass to remove Cadmium (II) ions from aqueous solutions: equilibrium and kinetic studies. Afr J Pure Appl Chem. 2015 May 31;9(5):105–112. doi:10.5897/AJPAC2015.0620
    [CROSSREF]
  30. Saraf S, Vaidya VK. Elucidation of sorption mechanism of R. arrhizus for reactive blue 222 using equilibrium and kinetic studies. J Microb Biochem Technol. 2016;8(3):236–246. doi:10.4172/1948-5948.1000292
    [CROSSREF]
  31. Sewalt V, Shanahan D, Gregg L, La Marta J, Carrillo R. The Generally Recognized as Safe (GRAS) process for industrial microbial enzymes. Ind Biotechnol (New Rochelle NY). 2016 Oct; 12(5):295–302. doi:10.1089/ind.2016.0011
    [CROSSREF]
  32. Shamim S. Biosorption of heavy metals. In: Derco J, Vrana B, editors. Biosorption. London (UK): IntechOpen Ltd.; 2018. p. 21–49.
  33. Singh PP, Chopra AK. Removal of Zn2+ and Pb2+ using new isolates of Bacillus spp. PPS03 and Bacillus subtilis PPS04 from paper mill effluents using indigenously designed Bench-top Bioreactor. J Appl Nat Sci. 2014 Jun 01;6(1):47–56. doi:10.31018/jans.v6i1.374
    [CROSSREF]
  34. Todorova K, Velkova Z, Stoytcheva M, Kirova G, Kostadinova S, Gochev V. Novel composite biosorbent from Bacillus cereus for heavy metals removal from aqueous solutions. Biotechnol Biotechnol Equip. 2019 Jan;33(1):730–738. doi:10.1080/13102818.2019.1610066
    [CROSSREF]
  35. Wierzba S. Biosorption of lead(II), zinc(II) and nickel(II) from industrial wastewater by Stenotrophomonas maltophilia and Bacillus subtilis. Pol J Chem Technol. 2015 Mar 1;17(1):79–87. doi:10.1515/pjct-2015-0012
    [CROSSREF]
  36. Zaib M, Athar MM, Saeed A, Farooq U, Salman M, Makshoof MN. Equilibrium, kinetic and thermodynamic biosorption studies of Hg(II) on red algal biomass of Porphyridium cruentum. Green Chem Lett Rev. 2016 Oct;9(4):179–189. doi:10.1080/17518253.2016.1185166
    [CROSSREF]
  37. Zawierucha I, Kozlowski C, Malina G. Immobilized materials for removal of toxic metal ions from surface/groundwaters and aqueous waste streams. Environ Sci - Proc Imp. 2016;18(4):429–444.

EXTRA FILES

COMMENTS