New Look on Antifungal Activity of Silver Nanoparticles (AgNPs)

Publications

Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology

GET ALERTS

ISSN: 1733-1331
eISSN: 2544-4646

DESCRIPTION

0
Reader(s)
0
Visit(s)

Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 68 , ISSUE 4 (Jan 2019) > List of articles

New Look on Antifungal Activity of Silver Nanoparticles (AgNPs)

BARBARA ŻAROWSKA / TOMASZ KOŹLECKI / MICHAŁ PIEGZA * / KATARZYNA JAROS-KOŹLECKA / MAŁGORZATA ROBAK *

Keywords : silver nanoparticles, antimicrobial activity, Paecilomyces, Chaetomium, Trichoderma, building materials, TEM images, BioscreenC

Citation Information : Polish Journal of Microbiology. Volume 68, Issue 4, Pages 515-525, DOI: https://doi.org/10.33073/pjm-2019-051

License : (CC-BY-NC-ND 4.0)

Published Online: 05-December-2019

ARTICLE

ABSTRACT

Content not available Share

FIGURES & TABLES

REFERENCES

  1. Abou-Shanab RAI, van Berkum P, Angle JS. Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere. 2007 Jun;68(2):360–367. https://doi.org/10.1016/j.chemosphere.2006.12.051
    [PUBMED] [CROSSREF]
  2. Akter M, Sikder MT, Rahman MM, Ullah AKMA, Hossain KFB, Banik S, Hosokawa T, Saito T, Kurasaki M. A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res. 2018 Jan;9:1–16. https://doi.org/10.1016/j.jare.2017.10.008
    [PUBMED] [CROSSREF]
  3. Anil Kumar S, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett. 2007 Feb 16;29(3):439–445. https://doi.org/10.1007/s10529-006-9256-7
    [PUBMED] [CROSSREF]
  4. AshaRani PV. Hande MP, Valiyaveettil S. Anti-proliferative activity of silver nanoparticles. BMC Cell Biol. 2009;10:Article 65. https://doi.org/10.1186/1471-2121-10-65
  5. Bargheer D, Nielsen J, Gébel G, Heine M, Salmen SC, Stauber R, Weller H, Heeren J, Nielsen P. The fate of a designed protein corona on nanoparticles in vitro and in vivo. Beilstein J Nanotechnol. 2015 Jan 06;6:36–46. https://doi.org/10.3762/bjnano.6.5
    [PUBMED] [CROSSREF]
  6. Bartłomiejczyk T, Lankoff A, Kruszewski M, Szumiel I. Silver nanoparticles – allies or adversaries? Ann Agric Environ Med. 2013; 20(1):48–54.
  7. Bundschuh M, Seitz F, Rosenfeldt RR, Schulz R. Effects of nanoparticles in fresh waters: risks, mechanisms and interactions. Freshw Biol. 2016 Dec;61(12):2185–2196. https://doi.org/10.1111/fwb.12701
    [CROSSREF]
  8. Chong TM, Yin WF, Mondy S, Grandclément C, Dessaux Y, Chan KG. Heavy-metal resistance of a France vineyard soil bacterium, Pseudomonas mendocina strain S5.2, revealed by whole-genome sequencing. J Bacteriol. 2012 Nov 15;194(22):6366. https://doi.org/10.1128/JB.01702-12
    [PUBMED] [CROSSREF]
  9. Dar MA, Ingle A, Rai M. Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomedicine. 2013 Jan;9(1):105–110. https://doi.org/10.1016/j.nano.2012.04.007
    [PUBMED] [CROSSREF]
  10. del Pino P, Pelaz B, Zhang Q, Maffre P, Nienhaus GU, Parak WJ. Protein corona formation around nanoparticles – from the past to the future. Mater Horiz. 2014;1(3):301–313. https://doi.org/10.1039/C3MH00106G
    [CROSSREF]
  11. Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine. 2016 Apr;12(3):789–799. https://doi.org/10.1016/j.nano.2015.11.016
    [PUBMED] [CROSSREF]
  12. Echegoyen Y, Nerín C. Nanoparticle release from nano-silver antimicrobial food containers. Food Chem Toxicol. 2013 Dec;62:16–22. https://doi.org/10.1016/j.fct.2013.08.014
    [PUBMED] [CROSSREF]
  13. EPA. Secondary drinking water standards: guidance for nuisance chemicals [Internet]. Washington, DC (USA): United States Environ mental Protection Agency; 2017 Mar 8 [cited 2019 May 15]. Available from https://www.epa.gov/dwstandardsregulations/secondary-drinking-water-standards-guidance-nuisance-chemicals
  14. Flores-López LZ, Espinoza-Gómez H, Somanathan R. Silver nano particles: electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review. J Appl Toxicol. 2019 Jan;39(1):16–26. https://doi.org/10.1002/jat.3654
    [PUBMED] [CROSSREF]
  15. Galván Márquez I, Ghiyasvand M, Massarsky A, Babu M, Samanfar B, Omidi K, Moon TW, Smith ML, Golshani A. Zinc oxide and silver nanoparticles toxicity in the baker’s yeast, Saccharomyces cerevisiae. PLoS One. 2018 Mar 19;13(3):e0193111. https://doi.org/10.1371/journal.pone.0193111
    [PUBMED] [CROSSREF]
  16. Guzman M, Dille J, Godet S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine. 2012 Jan;8(1):37–45. https://doi.org/10.1016/j.nano.2011.05.007
    [PUBMED] [CROSSREF]
  17. Jo YK, Kim BH, Jung G. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis. 2009 Oct;93(10):1037–1043. https://doi.org/10.1094/PDIS-93-10-1037
    [PUBMED] [CROSSREF]
  18. Kaiser JP, Roesslein M, Diener L, Wichser A, Nowack B, Wick P. Cytotoxic effects of nanosilver are highly dependent on the chloride concentration and the presence of organic compounds in the cell culture media. J Nanobiotechnology. 2017 Dec;15(1):5. https://doi.org/10.1186/s12951-016-0244-3
    [PUBMED] [CROSSREF]
  19. Kanawaria SK, Sankhla A, Jatav PK, Yadav RS, Verma KS, Velraj P, Kachhwaha S, Kothari SL. Rapid biosynthesis and charac terization of silver nanoparticles: an assessment of antibacterial and antimycotic activity. Appl Phys, A Mater Sci Process. 2018 Apr; 124(4): 320. https://doi.org/10.1007/s00339-018-1701-7
    [CROSSREF]
  20. Kędziora A, Krzyżewska E, Dudek B, Bugla-Płoskońska G. [The participation of outer membranes proteins in the bacterial sen si tivity to nanosilver]. Postepy Hig Med Dosw. 2016;70:610–617. https://doi.org/10.5604/17322693.1205005
    [CROSSREF]
  21. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007 Mar;3(1):95–101. https://doi.org/10.1016/j.nano.2006.12.001
    [PUBMED] [CROSSREF]
  22. Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, Lee DG. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals. 2009 Apr;22(2):235–242. https://doi.org/10.1007/s10534-008-9159-2
    [PUBMED] [CROSSREF]
  23. Kobiałka N, Mularczyk M, Kosiorowska K, Pilarska K, Łaba W, Piegza M, Robak M. New strains of filamentous fungi isolated from construction materials. EJPAU. 2019;22(1):#02. https://doi.org/10.30825/5.ejpau.169.2019.22.1
    [CROSSREF]
  24. Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine. 2010 Aug;6(4):570–574. https://doi.org/10.1016/j.nano.2009.12.002
    [PUBMED] [CROSSREF]
  25. Koziróg A, Rajkowska K, Otlewska A, Piotrowska M, Kunicka-Styczyńska A, Brycki B, Nowicka-Krawczyk P, Kościelniak M, Gutarowska B. Protection of historical wood against microbial degradation – selection and application of microbiocides. Int J Mol Sci. 2016 Aug 22;17(8):1364. https://doi.org/10.3390/ijms17081364
    [CROSSREF]
  26. Koźlecki T, Teterycz H, Sokołowski A, Polowczyk I, Sawiński W, Maliszewska I, Szydło J. Sposób syntezowania nanocząstek srebra. PL Patent deposition 2011; No P395979.
  27. Lara HH, Romero-Urbina DG, Pierce C, Lopez-Ribot JL, Arellano-Jiménez MJ, Jose-Yacaman M. Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. J Nanobio technology. 2015 Dec;13(1):91–102. https://doi.org/10.1186/s12951-015-0147-8
    [CROSSREF]
  28. Latgé JP, Mouyna I, Tekaia F, Beauvais A, Debeaupuis JP, Nierman W. Specific molecular features in the organization and bio synthesis of the cell wall of Aspergillus fumigatus. Med Mycol. 2005 Jan;43(s1) Suppl 1:15–22. https://doi.org/10.1080/13693780400029155
    [CROSSREF]
  29. Lee S, Jun BH. Silver Nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci. 2019 Feb 17;20(4):865. https://doi.org/10.3390/ijms20040865
    [CROSSREF]
  30. Li WR, Xie XB, Shi QS, Zeng HY, OU-Yang YS, Chen YB. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol. 2010 Jan;85(4):1115–1122. https://doi.org/10.1007/s00253-009-2159-5
    [PUBMED] [CROSSREF]
  31. Li XZ, Nikaido H, Williams KE. Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J Bacteriol. 1997 Oct;179(19):6127–6132. https://doi.org/10.1128/jb.179.19.6127-6132.1997
    [PUBMED] [CROSSREF]
  32. Łukaszuk CR, Krajewska-Kułak E, Kułak W. Effects of fungal air pollution on human health. Prog Health Sci. 2011;1(2):156–164.
  33. Martinez-Gutierrez F, Olive PL, Banuelos A, Orrantia E, Nino N, Sanchez EM, Ruiz F, Bach H, Av-Gay Y. Synthesis, cha rac terization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine. 2010 Oct;6(5):681–688. https://doi.org/10.1016/j.nano.2010.02.001
    [PUBMED] [CROSSREF]
  34. McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. Yao Wu Shi Pin Fen Xi. 2014 Mar;22(1):116–127. https://doi.org/10.1016/j.jfda.2014.01.010
  35. Metak AM, Ajaal TT. Investigation on polymer based nano-silver as packaging materials. Int Schol Scien Res Inn. 2013;7(12):772–778.
  36. Milić M, Leitinger G, Pavičić I, Zebić Avdičević M, Dobrović S, Goessler W, Vinković Vrček I. Cellular uptake and toxicity effects of silver nanoparticles in mammalian kidney cells. J Appl Toxicol. 2015 Jun;35(6):581–592. https://doi.org/10.1002/jat.3081
    [PUBMED] [CROSSREF]
  37. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ. The bactericidal effect of silver nanopar ticles. Nanotechnology. 2005 Oct 01;16(10):2346–2353. https://doi.org/10.1088/0957-4484/16/10/059
    [PUBMED] [CROSSREF]
  38. Nowicka-Krawczyk P, Żelazna-Wieczorek J, Koźlecki T. Silver nano particles as a control agent against facades coated by aerial algae – A model study of Apatococcus lobatus (green algae). PLoS One. 2017 Aug 14;12(8):e0183276. https://doi.org/10.1371/journal.pone.0183276
    [PUBMED] [CROSSREF]
  39. Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007 Mar 15;73(6):1712–1720. https://doi.org/10.1128/AEM.02218-06
    [PUBMED] [CROSSREF]
  40. Park MVDZ, Neigh AM, Vermeulen JP, de la Fonteyne LJJ, Verharen HW, Briedé JJ, van Loveren H, de Jong WH. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials. 2011 Dec;32(36):9810–9817. https://doi.org/10.1016/j.biomaterials.2011.08.085
    [PUBMED] [CROSSREF]
  41. PN-EN ISO 846. Polska norma. Tworzywa sztuczne. Ocena działania mikroorganizmów [Plastics-Evaluation of the action of the microorganisms, actualization 2019:05]. 2002 Dec.
  42. Pulit J, Banach M, Szczygłowska R, Bryk M. Nanosilver against fungi. Silver nanoparticles as an effective biocidal factor. Acta Biochim Pol. 2013;60(4):795–798.
    [PUBMED]
  43. Radhakrishnan VS, Reddy Mudiam MK, Kumar M, Dwivedi SP, Singh SP, Prasad T. Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen (Candida albicans). Int J Nano medicine. 2018 May;13:2647–2663. https://doi.org/10.2147/IJN.S150648
    [CROSSREF]
  44. Rahman M, Laurent S, Tawil N, Yahia L, Mahmoudi M. Nanoparticle and protein corona. In: Protein-nanoparticles interactions. The Bio-Nano Interface. Springer Series in Biophysics. Berlin, Heidel berg (Germany): Springer; 2013;15. p. 21–44. https://doi.org/10.1007/978-3-642-37555-2_2
    [CROSSREF]
  45. Rai M, Ingle AP, Gaikwad S, Gupta I, Gade A, Silvério da Silva S. Nanotechnology based anti-infectives to fight microbial intrusions. J Appl Microbiol. 2016 Mar;120(3):527–542. https://doi.org/10.1111/jam.13010
    [PUBMED] [CROSSREF]
  46. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009 Jan;27(1):76–83. https://doi.org/10.1016/j.biotechadv.2008.09.002
    [PUBMED] [CROSSREF]
  47. Riaz Ahmed KB, Nagy AM, Brown RP, Zhang Q, Malghan SG, Goering PL. Silver nanoparticles: significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicol In Vitro. 2017 Feb;38:179–192. https://doi.org/10.1016/j.tiv.2016.10.012
    [PUBMED] [CROSSREF]
  48. Robak M. Yarrowia lipolytica specific growth rate on acetate medium supplemented with glucose, glycerol or ethanol. Acta Sci Polon Biotechnologia. 2007;6(1):23–31.
  49. Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet JB. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother. 2008 Feb 04;61(4):869–876. https://doi.org/10.1093/jac/dkn034
    [PUBMED] [CROSSREF]
  50. Salvadori MR, Nascimento CAO, Corrêa B. Nickel oxide nanopar ticles film produced by dead biomass of filamentous fungus. Sci Rep. 2015 May;4(1):6404. https://doi.org/10.1038/srep06404
    [CROSSREF]
  51. Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine. 2007 Jun;3(2):168–171. https://doi.org/10.1016/j.nano.2007.02.001
    [PUBMED] [CROSSREF]
  52. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004 Jul;275(1):177–182. https://doi.org/10.1016/j.jcis.2004.02.012
    [PUBMED] [CROSSREF]
  53. Song H, Li B, Lin QB, Wu HJ, Chen Y. Migration of silver from nanosilver–polyethylene composite packaging into food simulants. Food Additives & Contaminants: Part A. 2011 Jul 08;28(12):1–5. https://doi.org/10.1080/19440049.2011.603705
  54. Tran QH, Nguyen VQ, Le A-T. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013;4:033001, 20 pp, https://doi.org/10.1088/2043-6262/4/3/033001
  55. Wen R, Hu L, Qu G, Zhou Q, Jiang G. Exposure, tissue biodistribution, and biotransformation of nanosilver. NanoImpact. 2016 Apr;2:18–28. https://doi.org/10.1016/j.impact.2016.06.001
    [CROSSREF]
  56. Xu Y, Gao C, Li X, He Y, Zhou L, Pang G, Sun S. In vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi. J Ocul Pharmacol Ther. 2013 Mar;29(2):270–274. https://doi.org/10.1089/jop.2012.0155
    [PUBMED] [CROSSREF]
  57. Yoon KY, Hoon Byeon J, Park JH, Hwang J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ. 2007 Feb;373(2-3):572–575. https://doi.org/10.1016/j.scitotenv.2006.11.007
    [PUBMED] [CROSSREF]
  58. Zarschler K, Rocks L, Licciardello N, Boselli L, Polo E, Garcia KP, De Cola L, Stephan H, Dawson KA. Ultrasmall inorganic nanoparticles: state-of-the-art and perspectives for biomedical appli cations. Nanomedicine. 2016 Aug;12(6):1663–1701. https://doi.org/10.1016/j.nano.2016.02.019
    [PUBMED] [CROSSREF]
  59. Zhang X-F, Liu Z-G, Shen W. Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and thera peutic approaches. Int J Mol Sci. 2016a;17(9):1534. https://doi.org/10.3390/ijms17091534
    [CROSSREF]
  60. Zhang X-F, Shen W, Gurunathan S. Silver nanoparticle-mediated cellular responses in various cell lines: an in vitro model. Int J Med Sci. 2016b;17:1603. https://doi.org/10.3390/ijmps17101603
  61. Zou J, Hannula M, Misra S, Feng H, Labrador R, Aula AS, Hyttinen J, Pyykkö I. Micro CT visualization of silver nanoparticles in the middle and inner ear of rat and transportation pathway after transtympanic injection. J Nanobiotechnology. 2015;13(1):5. https://doi.org/10.1186/s12951-015-0065-9
    [PUBMED] [CROSSREF]
  62. Żarowska B, Piegza M, Jaros-Koźlecka K, Koźlecki T, Robak M. Antimicrobial activity of silver nanoparticles. Conference material: Wrocław (Poland): BRIA; 2015;55.

EXTRA FILES

COMMENTS