Antifungal Activity and Physicochemical Properties of a Novel Antimicrobial Protein AMP-17 from Musca domestica

Publications

Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology

GET ALERTS

ISSN: 1733-1331
eISSN: 2544-4646

DESCRIPTION

0
Reader(s)
0
Visit(s)

Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 68 , ISSUE 4 (Jan 2019) > List of articles

Antifungal Activity and Physicochemical Properties of a Novel Antimicrobial Protein AMP-17 from Musca domestica

LONG-BING YANG / GUO GUO * / XIN-YU ZHAO / PEI-PEI SU / PING FU / JIAN PENG / JIANG-FAN XIU / BO-YAN LI

Keywords : antimicrobial peptides, AMP-17, antifungal activity, stability, hemolytic activity

Citation Information : Polish Journal of Microbiology. Volume 68, Issue 4, Pages 383-390, DOI: https://doi.org/10.33073/pjm-2019-041

License : (CC-BY-4.0)

Published Online: 03-September-2019

ARTICLE

ABSTRACT

Content not available Share

FIGURES & TABLES

REFERENCES

  1. Bellmann R, Smuszkiewicz P. Pharmacokinetics of antifungal drugs: practical implications for optimized treatment of patients. Infection. 2017;45(6):737–779. https://doi.org/10.1007/s15010-017-1042-z
    [PUBMED] [CROSSREF]
  2. Brizendine K, Baddley J, Pappas P. Pulmonary Cryptococcosis. Semin Respir Crit Care Med. 2011;32(06):727–734. https://doi.org/10.1055/s-0031-1295720
    [PUBMED] [CROSSREF]
  3. Burnik C, Altintaş ND, Özkaya G, Serter T, Selçuk ZT, Firat P, Arikan S, Cuenca-Estrella M, Topeli A. Acute respiratory distress syndrome due to Cryptococcus albidus pneumonia: case report and review of the literature. Med Mycol. 2007;45(5):469–473. https://doi.org/10.1080/13693780701386015
    [PUBMED] [CROSSREF]
  4. Cantón E, Pemán J, Espinel-Ingroff A, Martín-Mazuelos E, Carrillo-Muñoz A, Martínez JP. Comparison of disc diffusion assay with the CLSI reference method (M27-A2) for testing in vitro posaconazole activity against common and uncommon yeasts. J Antimicrob Chemother. 2008;61(1):135–138. https://doi.org/10.1093/jac/dkm442
    [PUBMED] [CROSSREF]
  5. Chang TW, Wei SY, Wang SH, Wei HM, Wang YJ, Wang CF, Chen C, Liao YD. Hydrophobic residues are critical for the helix-forming, hemolytic and bactericidal activities of amphipathic anti-microbial peptide TP4. PLoS One. 2017;12(10):e0186442. https://doi.org/10.1371/journal.pone.0186442
    [PUBMED] [CROSSREF]
  6. Chen Y, Mant CT, Farmer SW, Hancock REW, Vasil ML, Hodges RS. Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem. 2005;280(13):12316–12329. https://doi.org/10.1074/jbc.M413406200
    [CROSSREF]
  7. Chopra S, Capoor MR, Mallik R, Gupta S, Ray A, Khanna G, Suri JC, Bhattacharya D, Raghavan S. Pulmonary Cryptococcosis in HIV- sero-negative patients: case series from India. Mycoses. 2015;58(5):288–293. https://doi.org/10.1111/myc.12313
    [CROSSREF]
  8. Debenedectis CM, McCulloh RJ, Healey TT. Pulmonary Cryptococcosis. R I Med J (2013). 2013;96(5):53–54.
  9. Edwards IA, Elliott AG, Kavanagh AM, Zuegg J, Blaskovich MAT, Cooper MA. Contribution of amphipathicity and hydrophobicity to the antimicrobial activity and cytotoxicity of β-hairpin peptides. ACS Infect Dis. 2016;2(6):442–450. https://doi.org/10.1021/acsinfecdis.6b00045
    [CROSSREF]
  10. Fothergill AW. Antifungal susceptibility testing: Clinical Laboratory and Standards Institute (CLSI) methods. In: Hall GS, editor. Interactions of yeasts, moulds, and antifungal agents. New York (USA): Humana Press; 2012.
    [CROSSREF]
  11. Guo G, Tao R, Li Y, Ma H, Xiu J, Fu P, Wu J. Identification and characterization of a novel antimicrobial protein from the housefly Musca domestica. Biochem Biophys Res Commun. 2017;490(3):746–752. https://doi.org/10.1016/j.bbrc.2017.06.112
    [PUBMED] [CROSSREF]
  12. Iijima R, Kurata S, Natori S. Purification, characterization, and cDNA cloning of an antifungal protein from the hemolymph of Sarcophaga peregrina (flesh fly) larvae. J Biol Chem. 1993;268(16): 12055–12061.
    [PUBMED]
  13. Jensen RH. Resistance in human pathogenic yeasts and filamentous fungi: prevalence, underlying molecular mechanisms and link to the use of antifungals in humans and the environment. Dan Med J. 2016;63(10):B5288.
    [PUBMED]
  14. Klotz SA, Drutz DJ, Zajic JE. Factors governing adherence of Candida species to plastic surfaces. Infect Immun. 1985;50(1):97–101.
    [PUBMED]
  15. Konai MM, Ghosh C, Yarlagadda V, Samaddar S, Haldar J. Membrane active phenylalanine conjugated lipophilic norspermidine derivatives with selective antibacterial activity. J Med Chem. 2014; 57(22):9409–9423. https://doi.org/10.1021/jm5013566
    [PUBMED] [CROSSREF]
  16. Kovalchuk LV, Gankovskaya LV, Gankovskaya OA, Lavrov VF. Herpes simplex virus: treatment with antimicrobial peptides. Adv Exp Med Biol. 2007;601:369–376. https://doi.org/10.1007/978-0-387-72005-0_39
    [PUBMED] [CROSSREF]
  17. Liu Z, Yuan K, Zhang R, Ren X, Liu X, Zhao S, Wang D. Cloning and purification of the first termicin-like peptide from the cockroach Eupolyphaga sinensis. J Venom Anim Toxins Incl Trop Dis. 2016;22(1):5. https://doi.org/10.1186/s40409-016-0058-7
    [PUBMED] [CROSSREF]
  18. Loeffler J, Stevens DA. Antifungal drug resistance. Clin Infect Dis. 2003;36 Supplement_1:S31–S41. https://doi.org/10.1086/344658
    [PUBMED] [CROSSREF]
  19. Lortholary O, Nunez H, Brauner M, Dromer F. Pulmonary Cryptococcosis. Semin Respir Crit Care Med. 2004;25(02):145–157. https://doi.org/10.1055/s-2004-824899
    [PUBMED] [CROSSREF]
  20. Lovero G, De Giglio O, Montagna O, Diella G, Divenuto F, Lopuzzo M, Rutigliano S, Laforgia N, Caggiano G, Montagna MT. Epidemiology of candidemia in neonatal intensive care units: a persistent public health problem. Ann Ig. 2016;28(4):282–287.
    [PUBMED]
  21. Patnaik B, Kang S, Seo G, Lee H, Patnaik H, Jo Y, Tindwa H, Lee Y, Lee B, Kim N, et al. Molecular cloning, sequence characterization and expression analysis of a CD63 homologue from the coleopteran beetle, Tenebrio molitor. Int J Mol Sci. 2013;14(10):20744–20767. https://doi.org/10.3390/ijms141020744
    [PUBMED] [CROSSREF]
  22. Presicce P, Giannelli S, Taddeo A, Villa ML, Della Bella S. Human defensins activate monocyte-derived dendritic cells, promote the production of proinflammatory cytokines, and up-regulate the surface expression of CD91. J Leukoc Biol. 2009;86(4):941–948. https://doi.org/10.1189/jlb.0708412
    [CROSSREF]
  23. Quintana VM, Torres NI, Wachsman MB, Sinko PJ, Castilla V, Chikindas M. Antiherpes simplex virus type 2 activity of the anti-microbial peptide subtilosin. J Appl Microbiol. 2014;117(5):1253–1259. https://doi.org/10.1111/jam.12618
    [PUBMED] [CROSSREF]
  24. Ren SX, Cheng ASL, To KF, Tong JHM, Li MS, Shen J, Wong CCM, Zhang L, Chan RLY, Wang XJ, et al. Host immune defense peptide LL-37 activates caspase-independent apoptosis and suppresses colon cancer. Cancer Res. 2012;72(24):6512–6523. https://doi.org/10.1158/0008-5472.CAN-12-2359
    [PUBMED] [CROSSREF]
  25. Seydlová G, Pohl R, Zborníková E, Ehn M, Šimák O, Panova N, Kolář M, Bogdanová K, Večeřová R, Fišer R, et al. Lipophosphonoxins II: design, synthesis and properties of novel broad spectrum antibacterial agents. J Med Chem. 2017;60(14):6098–6118. https://doi.org/10.1021/acs.jmedchem.7b00355
    [PUBMED] [CROSSREF]
  26. Souza ALA, Díaz-Dellavalle P, Cabrera A, Larrañaga P, Dalla-Rizza M, De-Simone SG. Antimicrobial activity of pleurocidin is retained in Plc-2, a C-terminal 12-amino acid fragment. Peptides. 2013;45(7):78–84. https://doi.org/10.1016/j.peptides.2013.03.030
    [PUBMED] [CROSSREF]
  27. Spitzer M, Robbins N, Wright GD. Combinatorial strategies for combating invasive fungal infections. Virulence. 2017;8(2):169–185. https://doi.org/10.1080/21505594.2016.1196300
    [PUBMED] [CROSSREF]
  28. Tang W, Yuan H, Zhang H, Wang L, Qian H, Qi X. An antimicrobial peptide screened from casein hydrolyzate by Saccharomyces cerevisiae cell membrane affinity method. Food Control. 2015;50(3):413–422. https://doi.org/10.1016/j.foodcont.2014.09.030
    [CROSSREF]
  29. Tindwa H, Patnaik B, Kim D, Mun S, Jo Y, Lee B, Lee Y, Kim N, Han Y. Cloning, characterization and effect of TmPGRP-LE gene silencing on survival of Tenebrio molitor against Listeria monocytogenes infection. Int J Mol Sci. 2013;14(11):22462–22482. https://doi.org/10.3390/ijms141122462
    [PUBMED] [CROSSREF]
  30. Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016;44 D1:D1087–D1093. https://doi.org/10.1093/nar/gkv1278
    [PUBMED] [CROSSREF]
  31. Wang H, Xiao M, Chen SCA, Kong F, Sun ZY, Liao K, Lu J, Shao HF, Yan Y, Fan H, et al. In vitro susceptibilities of yeast species to fluconazole and voriconazole as determined by the 2010 National China Hospital Invasive Fungal Surveillance Net (CHIF-NET) study. J Clin Microbiol. 2012;50(12):3952–3959. https://doi.org/10.1128/JCM.01130-12
    [PUBMED] [CROSSREF]
  32. Wang Z, Wang G. APD: the antimicrobial peptide database. Nucleic Acids Res. 2004;32(90001):D590–D592. https://doi.org/10.1093/nar/gkh025
    [PUBMED] [CROSSREF]
  33. Yan H, Yun J, Ai D, Zhang W, Bai J, Guo J. Two novel cationic antifungal peptides isolated from Bacillus pumilus HN-10 and their inhibitory activity against Trichothecium roseum. World J Microbiol Biotechnol. 2018;34(2):21. https://doi.org/10.1007/s11274-017-2392-5
    [PUBMED] [CROSSREF]
  34. Zhang S, Huang J, Hu R, Guo G, Shang X, Wu J. Characterization of a new multifunctional beta-glucosidase from Musca domestica. Biotechnol Lett. 2017;39(8):1219–1227. https://doi.org/10.1007/s10529-017-2351-0
    [PUBMED] [CROSSREF]

EXTRA FILES

COMMENTS