Purification, Characterization and Inhibition of Alanine Racemase from a Pathogenic Strain of Streptococcus iniae

Publications

Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology

GET ALERTS

ISSN: 1733-1331
eISSN: 2544-4646

DESCRIPTION

0
Reader(s)
0
Visit(s)

Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 68 , ISSUE 4 (Jan 2019) > List of articles

Purification, Characterization and Inhibition of Alanine Racemase from a Pathogenic Strain of Streptococcus iniae

MURTALA MUHAMMAD / YANGYANG LI / SIYU GONG / YANMIN SHI / JIANSONG JU / BAOHUA ZHAO * / DONG LIU *

Keywords : Streptococcus iniae, alanine racemase, inhibitors, homogentisic acid, hydroquinone and peptidoglycan

Citation Information : Polish Journal of Microbiology. Volume 68, Issue 4, Pages 331-341, DOI: https://doi.org/10.33073/pjm-2019-036

License : (CC-BY-4.0)

Published Online: 03-September-2019

ARTICLE

ABSTRACT

Content not available Share

FIGURES & TABLES

REFERENCES

  1. Anthony KG, Strych U, Yeung KR, Shoen CS, Perez O, Krause KL, Cynamon MH, Aristoff PA, Koski RA. New classes of alanine racemase inhibitors identified by high-throughput screening show antimicrobial activity against Mycobacterium tuberculosis. PLoS One. 2011;6(5):e20374. https://doi.org/10.1371/journal.pone.0020374
    [PUBMED] [CROSSREF]
  2. Aruety T, Brunner T, Ronen Z, Gross A, Sowers K, Zilberg D. Decreasing levels of the fish pathogen Streptococcus iniae following inoculation into the sludge digester of a zero-discharge recirculating aquaculture system (RAS). Aquaculture. 2016;450:335–341. https://doi.org/10.1016/j.aquaculture.2015.08.002
    [CROSSREF]
  3. Awasthy D, Bharath S, Subbulakshmi V, Sharma U. Alanine racemase mutants of Mycobacterium tuberculosis require D-alanine for growth and are defective for survival in macrophages and mice. Microbiology. 2012;158(2):319–327. https://doi.org/10.1099/mic.0.054064-0
    [PUBMED] [CROSSREF]
  4. Azam MA, Jayaram U. Induced fit docking, free energy calculation and molecular dynamics studies on Mycobacterium tuberculosis alanine racemase inhibitor. Mol Simul. 2018;44(5):424–432. https://doi.org/10.1080/08927022.2017.1393811
    [CROSSREF]
  5. Badet B, Walsh C. Purification of an alanine racemase from Streptococcus faecalis and analysis of its inactivation by (1-aminoethyl) phosphonic acid enantiomers. Biochemistry. 1985;24(6):1333–1341. https://doi.org/10.1021/bi00327a010
    [PUBMED] [CROSSREF]
  6. Batson S, de Chiara C, Majce V, Lloyd AJ, Gobec S, Rea D, Fülöp V, Thoroughgood CW, Simmons KJ, Dowson CG, et al. Inhibition of D-Ala:D-Ala ligase through a phosphorylated form of the antibiotic D-cycloserine. Nat Commun. 2017;8(1):1939. https://doi.org/10.1038/s41467-017-02118-7
    [PUBMED] [CROSSREF]
  7. Chacon O, Feng Z, Harris NB, Cáceres NE, Adams LG, Barletta RG. Mycobacterium smegmatis D-alanine racemase mutants are not dependent on D-alanine for growth. Antimicrob Agents Chemother. 2002;46(1):47–54. https://doi.org/10.1128/AAC.46.2.47-54.2002
    [PUBMED] [CROSSREF]
  8. CLSI. Antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. Document M31-A3. Approved standard, 3rd ed. Wayne (USA): Clinical Laboratory Standards Institute; 2008.
  9. Couñago RM, Davlieva M, Strych U, Hill RE, Krause KL. Biochemical and structural characterization of alanine racemase from Bacillus anthracis (Ames). BMC Struct Biol. 2009;9(1):53. https://doi.org/10.1186/1472-6807-9-53
    [PUBMED] [CROSSREF]
  10. Dal Pozzo M, Viégas J, Santurio DF, Rossatto L, Soares IH, Alves SH. da Costa MM. [Antimicrobial activities of essential oils extracted from spices against Staphylococcus spp isolated from goat mastitis] (in Portuguese). Cienc Rural. 2011;41(4):667–672. https://doi.org/10.1590/S0103-84782011005000029
    [CROSSREF]
  11. Duque E, Daddaoua A, Cordero BF, De la Torre J, Antonia Molina-Henares M, Ramos JL. Identification and elucidation of in vivo function of two alanine racemases from Pseudomonas putida KT2440. Environ Microbiol Rep. 2017;9(5):581–588. https://doi.org/10.1111/1758-2229.12576
    [PUBMED] [CROSSREF]
  12. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39(4):783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
    [PUBMED] [CROSSREF]
  13. Francois JA, Kappock TJ. Alanine racemase from the acidophile Acetobacter aceti. Protein Expr Purif. 2007;51(1):39–48. https://doi.org/10.1016/j.pep.2006.05.016
    [PUBMED] [CROSSREF]
  14. Guo S, Mo Z, Wang Z, Xu J, Li Y, Dan X, Li A. Isolation and pathogenicity of Streptococcus iniae in offshore cage-cultured Trachinotus ovatus in China. Aquaculture. 2018;492:247–252. https://doi.org/10.1016/j.aquaculture.2018.04.0151
    [CROSSREF]
  15. Hashimoto A, Nishikawa T, Oka T, Takahashi K, Hayashi T. Determination of free amino acid enantiomers in rat brain and serum by high-performance liquid chromatography after derivatization with N-tert.-butyloxycarbonyl-l-cysteine and o-phthaldialdehyde. J Chromatogr B Biomed Sci Appl. 1992;582(1-2): 41–48. https://doi.org/10.1016/0378-4347(92)80300-F
    [CROSSREF]
  16. Higashi T. Two types of hydroquinone oxidase of Pseudomonas aeruginosa. J Biochem. 1958;45(10):785–793. https://doi.org/10.1093/oxfordjournals.jbchem.a126807
    [CROSSREF]
  17. Hunter RC, Newman DK. A putative ABC transporter, hatABCDE, is among molecular determinants of pyomelanin production in Pseudomonas aeruginosa. J Bacteriol. 2010;192(22):5962–5971. https://doi.org/10.1128/JB.01021-10
    [PUBMED] [CROSSREF]
  18. Im H, Sharpe ML, Strych U, Davlieva M, Krause KL. The crystal structure of alanine racemase from Streptococcus pneumoniae, a target for structure-based drug design. BMC Microbiol. 2011;11(1):116. https://doi.org/10.1186/1471-2180-11-116
    [PUBMED] [CROSSREF]
  19. Ju J, Xu S, Wen J, Li G, Ohnishi K, Xue Y, Ma Y. Characterization of endogenous pyridoxal 5’-phosphate-dependent alanine racemase from Bacillus pseudofirmus OF4. J Biosci Bioeng. 2009;107(3):225–229. https://doi.org/10.1016/j.jbiosc.2008.11.005
    [PUBMED] [CROSSREF]
  20. Kawakami R, Ohshida T, Sakuraba H, Ohshima T. A novel plp-dependent alanine/serine racemase from the hyperthermophilic archaeon Pyrococcus horikoshii ot-3. Front Microbiol. 2018;9:1481. https://doi.org/10.3389/fmicb.2018.01481
    [PUBMED] [CROSSREF]
  21. Kim MG, Strych U, Krause K, Benedik M, Kohn H. N(2)-substituted D,L-cycloserine derivatives. J Antibiot (Tokyo). 2003b;56(2): 160–168. https://doi.org/10.7164/antibiotics.56.160
    [CROSSREF]
  22. Kim MG. Strych U, Krause K, Benedik M, Kohn H. Evaluation of amino-substituted heterocyclic derivatives as alanine racemase inhibitors. Med Chem Res. 2003a;12(3):130–138.
  23. Lee Y, Mootien S, Shoen C, Destefano M, Cirillo P, Asojo OA, Yeung KR, Ledizet M, Cynamon MH, Aristoff PA, et al. Inhibition of mycobacterial alanine racemase activity and growth by thiadia-zolidinones. Biochem Pharmacol. 2013;86(2):222–230. https://doi.org/10.1016/j.bcp.2013.05.004
    [PUBMED] [CROSSREF]
  24. Liu D, Liu X, Zhang L, Jiao H, Ju J, Zhao B. Biochemical characteristics of an alanine racemase from Aeromonas hydrophil HBNUAh01. Microbiology. 2015;84(2):202–209. https://doi.org/10.1134/S0026261715020071
    [CROSSREF]
  25. Liu D, Zhang T, Wang Y, Muhammad M, Xue W, Ju J, Zhao B. Knockout of alanine racemase gene attenuates the pathogenicity of Aeromonas hydrophila. BMC Microbiol. 2019;19(1):72. https://doi.org/10.1186/s12866-019-1437-3
    [PUBMED] [CROSSREF]
  26. Liu S, Wei Y, Zhou X, Zhang K, Peng X, Ren B, Chen V, Cheng L, Li M. Function of alanine racemase in the physiological activity and cariogenicity of Streptococcus mutans. Sci Rep. 2018;8(1):5984. https://doi.org/10.1038/s41598-018-24295-1
    [PUBMED] [CROSSREF]
  27. Nachbauer CA, James JH, Edwards LL, Ghory MJ, Fischer JE. Infusion of branched chain-enriched amino acid solutions in sepsis. Am J Surg. 1984;147(6):743–752. https://doi.org/10.1016/0002-9610(84)90192-2
    [PUBMED] [CROSSREF]
  28. Nakatani Y, Opel-Reading HK, Merker M, Machado D, Andres S, Kumar SS, Moradigaravand D, Coll F, Perdigão J, Portugal I, et al. Role of alanine racemase mutations in Mycobacterium tuberculosis d-cycloserine resistance. Antimicrob Agents Chemother. 2017;61(12):e01575-17. https://doi.org/10.1128/AAC.01575-17
    [PUBMED] [CROSSREF]
  29. Palumbo E, Favier CF, Deghorain M, Cocconcelli PS, Grangette C, Mercenier A, Vaughan EE, Hols P. Knockout of the alanine race-mase gene in Lactobacillus plantarum results in septation defects and cell wall perforation. FEMS Microbiol Lett. 2004;233(1):131–138. https://doi.org/10.1016/j.femsle.2004.02.001
    [PUBMED] [CROSSREF]
  30. Patrick WM, Weisner J, Blackburn JM. Site-directed mutagenesis of Tyr354 in Geobacillus stearothermophilus alanine racemase identifies a role in controlling substrate specificity and a possible role in the evolution of antibiotic resistance. ChemBioChem. 2002;3(8):789–792. https://doi.org/10.1002/1439-7633(20020802)3:8<789::AID-CBIC789>3.0.CO;2-D
    [PUBMED] [CROSSREF]
  31. Qiu W, Zheng X, Wei Y, Zhou X, Zhang K, Wang S, Cheng L, Li Y, Ren B, Xu X, et al. d-Alanine metabolism is essential for growth and biofilm formation of Streptococcus mutans. Mol Oral Microbiol. 2016;31(5):435–444. https://doi.org/10.1111/omi.12146
    [PUBMED] [CROSSREF]
  32. Ray S, Das S, Panda PK, Suar M. Identification of a new alanine racemase in Salmonella Enteritidis and its contribution to pathogenesis. Gut Pathog. 2018;10(1):30. https://doi.org/10.1186/s13099-018-0257-6
    [PUBMED] [CROSSREF]
  33. Saavedra MJ, Guedes-Novais S, Alves A, Rema P, Tacão M, Correia A, Martínez-Murcia A. Resistance to β-lactam antibiotics in Aeromonas hydrophila isolated from rainbow trout (Oncorhynchus mykiss). Int Microbiol. 2004;7(3):207–211.
    [PUBMED]
  34. Scaletti ER, Luckner SR, Krause KL. Structural features and kinetic characterization of alanine racemase from Staphylococcus aureus (Mu50). Acta Crystallogr D Biol Crystallogr. 2012;68(1):82–92. https://doi.org/10.1107/S0907444911050682
    [PUBMED] [CROSSREF]
  35. Seow TK, Inagaki K, Tamura T, Soda K, Tanaka H. Alanine racemase from an acidophile, Acidiphilium organovorum: purification and characterization. Biosci Biotechnol Biochem. 1998;62(2):242–247. https://doi.org/10.1271/bbb.62.242
    [PUBMED] [CROSSREF]
  36. Shrestha R, Lockless SW, Sorg JA. A Clostridium difficile alanine racemase affects spore germination and accommodates serine as a substrate. J Biol Chem. 2017;292(25):10735–10742. https://doi.org/10.1074/jbc.M117.791749
    [CROSSREF]
  37. Soda K, Tanizawa K. Thermostable alanine racemase. Its structural stability. Ann N Y Acad Sci. 1990;585 1 Vitamin B6:386–393. https://doi.org/10.1111/j.1749-6632.1990.tb28071.x
    [CROSSREF]
  38. Strych U, Davlieva M, Longtin JP, Murphy EL, Im H, Benedik MJ, Krause KL. Purification and preliminary crystallization of alanine racemase from Streptococcus pneumoniae. BMC Microbiol. 2007;7(1):40. https://doi.org/10.1186/1471-2180-7-40
    [PUBMED] [CROSSREF]
  39. Tassoni R, van der Aart LT, Ubbink M, van Wezel GP, Pannu NS. Structural and functional characterization of the alanine racemase from Streptomyces coelicolor A3(2). Biochem Biophys Res Commun. 2017;483(1):122–128. https://doi.org/10.1016/j.bbrc.2016.12.183
    [PUBMED] [CROSSREF]
  40. Tavares GC, de Queiroz GA, Assis GBN, Leibowitz MP, Teixeira JP, Figueiredo HCP, Leal CAG. Disease outbreaks in farmed Amazon catfish (Leiarius marmoratus x Pseudoplatystoma corruscans) caused by Streptococcus agalactiae, S. iniae, and S. dysgalactiae. Aquaculture. 2018;495(1):384–392. https://doi.org/10.1016/j.aquaculture.2018.06.027
    [CROSSREF]
  41. Teulé F, Cooper AR, Furin WA, Bittencourt D, Rech EL, Brooks A, Lewis RV. A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning. Nat Protoc. 2009;4(3):341–355. https://doi.org/10.1038/nprot.2008.250
    [PUBMED] [CROSSREF]
  42. Toney MD. Reaction specificity in pyridoxal phosphate enzymes. Arch Biochem Biophys. 2005;433(1):279–287. https://doi.org/10.1016/j.abb.2004.09.037
    [PUBMED] [CROSSREF]
  43. Wang Y, Yang C, Xue W, Zhang T, Liu X, Ju J, Zhao B, Liu D. Selection and characterization of alanine racemase inhibitors against Aeromonas hydrophila. BMC Microbiol. 2017;17(1):122. https://doi.org/10.1186/s12866-017-1010-x
    [PUBMED] [CROSSREF]
  44. Wei Y, Qiu W, Zhou XD, Zheng X, Zhang KK, Wang SD, Li YQ, Cheng L, Li JY, Xu X, et al. Alanine racemase is essential for the growth and interspecies competitiveness of Streptococcus mutans. Int J Oral Sci. 2016;8(4):231–238. https://doi.org/10.1038/ijos.2016.34
    [PUBMED] [CROSSREF]
  45. Yokoigawa K, Kawai H, Endo K, Hee Lim Y, Esaki N, Soda K. Thermolabile alanine racemase from a psychotroph, Pseudomonas fluorescens: purification and properties. Biosci Biotechnol Biochem. 1993;57(1):93–97. https://doi.org/10.1271/bbb.57.93
    [PUBMED] [CROSSREF]

EXTRA FILES

COMMENTS