Chemical Composition of Aspergillus creber Extract and Evaluation of its Antimicrobial and Antioxidant Activities

Publications

Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology

GET ALERTS

ISSN: 1733-1331
eISSN: 2544-4646

DESCRIPTION

0
Reader(s)
0
Visit(s)

Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 68 , ISSUE 4 (Jan 2019) > List of articles

Chemical Composition of Aspergillus creber Extract and Evaluation of its Antimicrobial and Antioxidant Activities

AFAF SAKHRI * / NOREDDINE KACEM CHAOUCHE / MARIA ROSARIA CATANIA / ALBERTO RITIENI / ANTONELLO SANTINI

Keywords : Antimicrobial activity, antioxidant activity, Aspergillus creber, UHPLC-MS/MS, Versicolores

Citation Information : Polish Journal of Microbiology. Volume 68, Issue 4, Pages 309-316, DOI: https://doi.org/10.33073/pjm-2019-033

License : (CC-BY-4.0)

Published Online: 03-September-2019

ARTICLE

ABSTRACT

Content not available Share

FIGURES & TABLES

REFERENCES

  1. Abdel-Monem N, Abdel-Azeem AM, El Ashry ESH, Ghareeb DA, Nabil-Adam A. Assessment of secondary metabolites from marinederived fungi as antioxidant. Open J Med Chem. 2013;03(03):60–73. https:/doi.org/10.4236/ojmc.2013.33009
    [CROSSREF]
  2. Abo-Elmagd HI. Evaluation and optimization of antioxidant potentiality of Chaetomium madrasense AUMC 9376. J Genet Eng Biotechnol. 2014;12(1):21–26. https:/doi.org/10.1016/j.jgeb.2014.03.002
    [CROSSREF]
  3. Bai ZQ, Lin X, Wang Y, Wang J, Zhou X, Yang B, Liu J, Yang X, Wang Y, Liu Y. New phenyl derivatives from endophytic fungus Aspergillus flavipes AIL8 derived of mangrove plant Acanthus ilicifolius. Fitoterapia. 2014;95:194–202. https:/doi.org/10.1016/j.fitote.2014.03.021
    [PUBMED] [CROSSREF]
  4. Balcells M, Canela R, Coll J, Sanchís V, Torres M. Effect of fungal metabolites and some derivatives against Tribolium castaneum (Herbst) and Nezara viridula (L.). Pestic Sci. 1995;45(4):319–323. https:/doi.org/10.1002/ps.2780450405
    [CROSSREF]
  5. Brakhage AA, Schroeckh V. Fungal secondary metabolites – Strategies to activate silent gene clusters. Fungal Genet Biol. 2011;48(1): 15–22. https:/doi.org/10.1016/j.fgb.2010.04.004
    [PUBMED] [CROSSREF]
  6. Chen XW, Li CW, Cui CB, Hua W, Zhu TJ, Gu QQ. Nine new and five known polyketides derived from a deep sea-sourced Aspergillus sp. 16-02-1. Mar Drugs. 2014;12(6):3116–3137. https:/doi.org/10.3390/md12063116
    [PUBMED] [CROSSREF]
  7. Cheshmi F, Kazerouni F, Omrani MD, Rahimipour A, Shanaki M, Dehghan-Nayeri N, Younesian O, Rezapour Kalkhoran M. Effect of emodin on expression of VEGF-A and VEGFR_2 genes in human breast carcinoma MCF-7 Cell. Int J Cancer Manag. 2017;10(7):e8095. https:/doi.org/10.5812/ijcm.8095
    [CROSSREF]
  8. CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard – Ninth Edition. CLSI document M07-A9. Wayne (USA): Clinical and Laboratory Standards Institute; 2012.
  9. Despot DJ, Kocsubé S, Bencsik O, Kecskeméti A, Szekeres A, Vágvölgyi C, Varga J, Klarić MŠ. Species diversity and cytotoxic potency of airborne sterigmatocystin-producing Aspergilli from the section Versicolores. Sci Total Environ. 2016;562:296–304. https:/doi.org/10.1016/j.scitotenv.2016.03.183
    [PUBMED] [CROSSREF]
  10. Despot DJ, Kocsubé S, Bencsik O, Kecskeméti A, Szekeres A, Vágvölgyi C, Varga J, Klarić MŠ. New sterigmatocystin-producing species of Aspergillus section Versicolores from indoor air in Croatia. Mycol Prog. 2017;16(1):63–72. https:/doi.org/10.1007/s11557-016-1250-4
    [CROSSREF]
  11. Dewi RT, Tachibana S, Itoh K, Ilyas M. Isolation of antioxidant compounds from Aspergillus terreus LS01. J Microbial Biochem Technol. 2012;4:010–014.
  12. Dhankhar S, Kumar S, Dhankhar S, Yadav JP. Antioxidant activity of fungal endophytes isolated from salvadora oleoides decne. Int J Pharm Pharm Sci. 2012;4:380–385.
  13. Dudonné S, Vitrac X, Coutière P, Woillez M, Mérillon JM. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J Agric Food Chem. 2009;57(5):1768–1774. https:/doi.org/10.1021/jf803011r
    [PUBMED] [CROSSREF]
  14. Ebada SS, El-Neketi M, Ebrahim W, Mándi A, Kurtán T, Kalscheuer R, Müller WEG, Proksch P. Cytotoxic secondary metabolites from the endophytic fungus Aspergillus versicolor KU258497. Phytochem Lett. 2018;24:88–93. https:/doi.org/10.1016/j.phytol.2018.01.010
    [CROSSREF]
  15. Floegel A, Kim DO, Chung SJ, Koo SI, Chun OK. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J Food Compos Anal. 2011;24(7):1043–1048. https:/doi.org/10.1016/j.jfca.2011.01.008
    [CROSSREF]
  16. Gan RY, Kuang L, Xu XR, Zhang Y, Xia EQ, Song FL, Li HB. Screening of natural antioxidants from traditional Chinese medicinal plants associated with treatment of rheumatic disease. Molecules. 2010;15(9):5988–5997. https:/doi.org/10.3390/molecules15095988
    [PUBMED] [CROSSREF]
  17. Gautier M, Normand AC, Ranque S. Previously unknown species of Aspergillus. Clin Microbiol Infect. 2016;22(8):662–669. https:/doi.org/10.1016/j.cmi.2016.05.013
    [PUBMED] [CROSSREF]
  18. Hatano T, Uebayashi H, Ito H, Shiota S, Tsuchiya T, Yoshida T. Phenolic constituents of Cassia seeds and antibacterial effect of some naphthalenes and anthraquinones on methicillin-resistant Staphylococcus aureus. Chem Pharm Bull (Tokyo). 1999;47(8):1121–1127. https:/doi.org/10.1248/cpb.47.1121
    [PUBMED] [CROSSREF]
  19. Izhaki I. Emodin – a secondary metabolite with multiple ecological functions in higher plants. New Phytol. 2002;155(2):205–217. https:/doi.org/10.1046/j.1469-8137.2002.00459.x
    [CROSSREF]
  20. Jakovljević V, Milićević J, Stojanović J, Solujić S, Vrvić M. Anti-oxidant activity of ethanolic extract of Penicillium chrysogenum and Penicillium fumiculosum. Hem Ind. 2014;68(1):43–49. https:/doi.org/10.2298/HEMIND121102027J
    [CROSSREF]
  21. Jurjevic Z, Peterson SW, Horn BW. Aspergillus section Versicolores: nine new species and multilocus DNA sequence based phylogeny. IMA Fungus. 2012;3(1):59–795. https:/doi.org/10.5598/imafungus.2012.03.01.07
    [CROSSREF]
  22. Jurjević Ž, Peterson SW, Solfrizzo M, Peraica M. Sterigmatocystin production by nine newly described Aspergillus species in section Versicolores grown on two different media. Mycotoxin Res. 2013;29(3):141–145. https:/doi.org/10.1007/s12550-013-0160-4
    [CROSSREF]
  23. Keller NP, Turner G, Bennett JW. Fungal secondary metabolism – from biochemistry to genomics. Nat Rev Microbiol. 2005;3(12):937–947. https:/doi.org/10.1038/nrmicro1286
    [CROSSREF]
  24. Kim YM, Lee CH, Kim HG, Lee HS. Anthraquinones isolated from Cassia tora (Leguminosae) seed show an antifungal property against phytopathogenic fungi. J Agric Food Chem. 2004;52(20):6096–6100. https:/doi.org/10.1021/jf049379p
    [PUBMED] [CROSSREF]
  25. Knafl D, Tobudic S, Cheng SC, Bellamy DR, Thalhammer F. Dalbavancin reduces biofilms of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus epidermidis (MRSE). Eur J Clin Microbiol Infect Dis. 2017;36(4):677–680. https:/doi.org/10.1007/s10096-016-2845-z
    [PUBMED] [CROSSREF]
  26. Kumaresan S, Karthi V, Senthilkumar V, Balakumar BS, Stephen A. Biochemical constituents and antioxidant potential of endophytic fungi isolated from the leaves of Azadirachta indica A. Juss (Neem) from Chennai, India. J. Acad. Ind. Res. 2015;3:355–361.
  27. Lehner SM, Neumann NKN, Sulyok M, Lemmens M, Krska R, Schuhmacher R. Evaluation of LC-high-resolution FT-Orbitrap MS for the quantification of selected mycotoxins and the simultaneous screening of fungal metabolites in food. Food Additives & Contaminants: Part A. 2011;28(10):1457–1468. https:/doi.org/10.1080/19440049.2011.599340
    [CROSSREF]
  28. Martins N, Barros L, Henriques M, Silva S, Ferreira ICFR. Activity of phenolic compounds from plant origin against Candida species. Ind Crops Prod. 2015;74:648–670. https:/doi.org/10.1016/j.indcrop.2015.05.067
    [CROSSREF]
  29. Micheluz A, Manente S, Tigini V, Prigione V, Pinzari F, Ravagnan G, Varese GC. The extreme environment of a library: xerophilic fungi inhabiting indoor niches. Int Biodeterior Biodegradation. 2015;99:1–7. https:/doi.org/10.1016/j.ibiod.2014.12.012
    [CROSSREF]
  30. Micheluz A, Sulyok M, Manente S, Krska R, Varese GC, Ravagnan G. Fungal secondary metabolite analysis applied to Cultural Heritage: the case of a contaminated library in Venice. World Mycotoxin J. 2016;9(3):397–407. https:/doi.org/10.3920/WMJ2015.1958
    [CROSSREF]
  31. NCCLS. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard – Second Edition. NCCLS document M27-A2. Wayne (USA): National Committee for Clinical Laboratory Standards; 2002.
  32. Noor Ifatul HMD, Lee HY, Nazamid S, Norhana W, Mahyudin NA. In vitro antibacterial activity of marine-derived fungi isolated from Pulau Redang and Pulau Payar Marine Parks, Malaysia against selected food-borne pathogens. Int Food Res J. 2016;23:2681–2688.
  33. Nwobodo DC, Ugwu MC, Okoye FBC. Screening of endophytic fungal secondary metabolites from Garcinia kola and Cola nitida for antioxidant properties. J Pharma Res. 2017;1:000136.
  34. Piontek M, Łuszczyńska K, Lechów H. Occurrence of the toxin-Producing Aspergillus versicolor Tiraboschi in residential buildings. Int J Environ Res Public Health. 2016;13(9):862. https:/doi.org/10.3390/ijerph13090862
    [CROSSREF]
  35. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26(9-10): 1231–1237. https:/doi.org/10.1016/S0891-5849(98)00315-3
    [PUBMED] [CROSSREF]
  36. Samson RA, Visagie CM, Houbraken J, Hong SB, Hubka V, Klaassen CHW, Perrone G, Seifert KA, Susca A, Tanney JB, et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol. 2014;78:141–173. https:/doi.org/10.1016/j.simyco.2014.07.004
    [PUBMED] [CROSSREF]
  37. Sharma SK. Optimized extraction and antioxidant activities of polysaccharides from two entomogenous fungi. J Bioanal Biomed. 2015;07(06):180–187. https:/doi.org/10.4172/1948-593X.1000141
    [CROSSREF]
  38. Siddiquee S, Azad SA, Abu Bakar F, Naher L, Vijay Kumar S. Separation and identification of hydrocarbons and other volatile compounds from cultures of Aspergillus niger by GC-MS using two different capillary columns and solvents. J Saudi Chem Soc. 2015;19(3):243–256. https:/doi.org/10.1016/j.jscs.2012.02.007
    [CROSSREF]
  39. Siqueira JPZ, Sutton DA, García D, Gené J, Thomson P, Wiederhold N, Guarro J. Species diversity of Aspergillus section Versicolores in clinical samples and antifungal susceptibility. Fungal Biol. 2016;120(11):1458–1467. https:/doi.org/10.1016/j.funbio.2016.02.006
    [PUBMED] [CROSSREF]
  40. Slack GJ, Puniani E, Frisvad JC, Samson RA, Miller JD. Secondary metabolites from Eurotium species, Aspergillus calidoustus and A. insuetus common in Canadian homes with a review of their chemistry and biological activities. Mycol Res. 2009;113(4):480–490. https:/doi.org/10.1016/j.mycres.2008.12.002
    [PUBMED] [CROSSREF]
  41. Smith H, Doyle S, Murphy R. Filamentous fungi as a source of natural antioxidants. Food Chem. 2015;185:389–397. https:/doi.org/10.1016/j.foodchem.2015.03.134
    [CROSSREF]
  42. Song F, Liu X, Guo H, Ren B, Chen C, Piggott AM, Yu K, Gao H, Wang Q, Liu M, et al. Brevianamides with antitubercular potential from a marine-derived isolate of Aspergillus versicolor. Org Lett. 2012;14(18):4770–4773. https:/doi.org/10.1021/ol302051x
    [PUBMED] [CROSSREF]
  43. Sugiharto S, Yudiarti T, Isroli I. Assay of antioxidant potential of two filamentous fungi isolated from the Indonesian fermented dried cassava. Antioxidants. 2016;5(1):6. https:/doi.org/10.3390/antiox5010006
    [CROSSREF]
  44. Sulyok M, Krska R, Schuhmacher R. A liquid chromatography/tandem mass spectrometric multi-mycotoxin method for the quantification of 87 analytes and its application to semi-quantitative screening of moldy food samples. Anal Bioanal Chem. 2007;389(5): 1505–1523. https:/doi.org/10.1007/s00216-007-1542-2
    [PUBMED] [CROSSREF]
  45. Turkoglu A, Duru ME, Mercan N, Kivrak I, Gezer K. Antioxidant and antimicrobial activities of Laetiporus sulphureus (Bull.) Murrill. Food Chem. 2007;101(1):267–273. https:/doi.org/10.1016/j.foodchem.2006.01.025
    [CROSSREF]
  46. Valle DL Jr, Andrade JI, Puzon JJM, Cabrera EC, Rivera WL. Antibacterial activities of ethanol extracts of Philippine medicinal plants against multidrug-resistant bacteria. Asian Pac J Trop Biomed. 2015;5(7):532–540. https:/doi.org/10.1016/j.apjtb.2015.04.005
    [CROSSREF]
  47. Vishwanath V, Sulyok M, Labuda R, Bicker W, Krska R. Simultaneous determination of 186 fungal and bacterial metabolites in indoor matrices by liquid chromatography/tandem mass spectrometry. Anal Bioanal Chem. 2009;395(5):1355–1372. https:/doi.org/10.1007/s00216-009-2995-2
    [PUBMED] [CROSSREF]
  48. Wang CCC, Chiang YM, Kuo PL, Chang JK, Hsu YL. Norsolorinic acid inhibits proliferation of T24 human bladder cancer cells by arresting the cell cycle at the G0/G1 phase and inducing a Fas/membrane-bound Fas ligand-mediated apoptotic pathway. Clin Exp Pharmacol Physiol. 2008;35(11):1301–1308. https:/doi.org/10.1111/j.1440-1681.2008.05007.x
    [PUBMED] [CROSSREF]
  49. Xu X, Zhang X, Nong X, Wang J, Qi S. Brevianamides and mycophenolic acid derivatives from the deep-dea-derived fungus Penicillium brevicompactum DFFSCS025. Mar Drugs. 2017;15(2):43. https:/doi.org/10.3390/md15020043
    [CROSSREF]
  50. Yu JH, Keller N. Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol. 2005;43(1):437–458. https:/doi.org/10.1146/annurev.phyto.43.040204.140214
    [CROSSREF]
  51. Zhao C, Wu Y, Li F, Jin X. Emodin inhibits proliferation and invasion, and induces apoptosis in human esophageal cancer cell line ECA109. Trop J Pharm Res. 2017;16(4):781–785. https:/doi.org/10.4314/tjpr.v16i4.6
    [CROSSREF]
  52. Zhuang Y, Teng X, Wang Y, Liu P, Wang H, Li J, Li G, Zhu W. Cyclopeptides and polyketides from coral-associated fungus, Aspergillus versicolor LCJ-5-4. Tetrahedron. 2011;67(37):7085–7089. https:/doi.org/10.1016/j.tet.2011.07.003
    [CROSSREF]

EXTRA FILES

COMMENTS