Physiological basis in the assessment of myocardial mechanics using speckle-tracking echocardiography 2D. Part II

Publications

Share / Export Citation / Email / Print / Text size:

Journal of Ultrasonography

Polish Ultrasound Society (Polskie Towarzystwo Ultrasonograficzne)

Subject: Medicine

GET ALERTS

ISSN: 2084-8404
eISSN: 2451-070X

DESCRIPTION

0
Reader(s)
0
Visit(s)

Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 16 , ISSUE 66 (October 2016) > List of articles

Physiological basis in the assessment of myocardial mechanics using speckle-tracking echocardiography 2D. Part II

Wojciech Mądry * / Maciej Aleksander Karolczak

Keywords : ventricular function, myocardial strain, myocardial strain rate, speckle tracking echocardiography

Citation Information : Journal of Ultrasonography. Volume 16, Issue 66, Pages 304-316, DOI: https://doi.org/10.15557/JoU.2016.0031

License : (CC BY-NC-ND 3.0)

Received Date : 15-July-2015 / Accepted: 05-October-2015 / Published Online: 07-September-2016

ARTICLE

ABSTRACT

In this paper, the authors attempt to concisely present the anatomical and pathophysiological bases as well as the principles for echocardiographic evaluation of mechanical aspects of cardiac function based on speckle tracking method. This technique uses a phenomenon involving the formation of characteristic image units, referred to as speckles or acoustic markers, which are stable during cardiac cycle, on a two-dimensional echocardiographic picture. Changes in the position of these speckles throughout the cardiac cycle, which are monitored and analyzed semi-automatically by a computer system, reflect deformation of both, cardiac ventricle as a whole as well as its individual anatomical segments. The values of strain and the strain rate, as well as the range and velocity of the movement of these markers, which are in close relationship with multiple hemodynamic parameters, can be visualized as various types of charts – linear, two- and three-dimensional – as well as numerical values, enabling deeper insight into the mechanical and hemodynamic aspects of cardiac function in health and disease. The use of information obtained based on speckle tracking echocardiography allows to understand previously unclear mechanisms of physiological and pathophysiological processes. The first part of the study discusses the formation of a two-dimensional ultrasound image and the speckles, as well as the technical aspects of tracking their movement. The second part presents in more detail the methodology of speckle-tracking echocardiography, the characteristic abnormalities of cardiac mechanics presenting in different clinical entities, and the limitations related to given clinical and technical issues.

W niniejszej pracy autorzy podejmują próbę zwięzłego przedstawienia anatomicznych i patofizjologicznych podstaw oraz zasad echokardiograficznej oceny mechanicznych aspektów pracy serca w oparciu o metodę śledzenia markerów akustycznych. Metoda ta wykorzystuje zjawisko powstawania w dwuwymiarowym obrazie echokardiograficznym charakterystycznych, niezmieniających się w czasie jednostek obrazowych, określanych mianem plamek lub markerów akustycznych. Zmiany położenia plamek, obserwowane i analizowane półautomatycznie w trakcie całego cyklu serca przez system komputerowy, odzwierciedlają odkształcenie zarówno całej komory, jak i jej poszczególnych segmentów anatomicznych. Wartości odkształcenia, tempa odkształcenia oraz zakresu i prędkości ruchu markerów, pozostające w ścisłym związku z różnorodnymi parametrami hemodynamicznymi, mogą być prezentowane graficznie jako różnego rodzaju wykresy (liniowe, dwu- i trójwymiarowe) oraz wartości liczbowe, co umożliwia pogłębiony wgląd w mechaniczne i hemodynamiczne aspekty funkcji serca w stanach zdrowia i choroby. Wykorzystanie informacji płynących ze śledzenia markerów akustycznych umożliwia zrozumienie dotychczas niejasnych procesów fizjologicznych i patofizjologicznych. W pierwszej części pracy omówiono powstawanie ultrasonograficznego obrazu dwuwymiarowego i markerów akustycznych oraz techniczne aspekty analizy ich ruchu. W drugiej części przedstawiono bardziej szczegółowo metodykę badania za pomocą techniki śledzenia markerów akustycznych, omówiono charakterystyczne zaburzenia mechaniki mięśnia serca w różnych stanach klinicznych, a także wskazano ograniczenia metody spowodowane kwestiami technicznymi oraz problemami występującymi specyficznie w niektórych chorobach.

Graphical ABSTRACT

Carrying out the procedure

Two-dimensional speckle tracking technique allows for an assessment of changes in the position of the individual speckles (acoustic markers) on the surface of an imaging sector, therefore an analysis of several sections perpendicular to each other is necessary to obtain complete information on the three-dimensional mechanics of a given heart chamber. Analysis of left ventricular function requires optimal twodimensional images that allow for an assessment of the individual motion components in three basic apical views: fourchamber, two-chamber and a view of LV in the long axis, as well as transverse views: visualizing LV at the level of mitral valve cusps, at the level of papillary muscles and in the apical region(13). The highest possible frame rate (most authors recommend values above 60 frames/sec, and in case of tachycardia – higher values, which in turn requires the use of the narrowest possible angle of image sector – only slightly wider than the structure examined(47)) should be used for the most accurate and smooth tracking of the movement of individual speckles. Optimal visualization of epicardium and epicardium as well as elimination of all image artifacts that could imitate the actual speckles and impair the analysis of their movement, seems necessary(2, 8). Finally, maximum stability of the position of the examined structure inside the image should be achieved to avoid the ‘loss’ of its fragments due to heart dislocation relative to chest walls. A region of interest is selected on the registered image using a special cursor, i.e. the borders of endocardium and epicardium, ventricular wall and the septum are delineated as accurately as possible, excluding the pericardium from the examined region. Once the appropriateness of the selected boundaries of the examined area is approved, the area is automatically divided by the system into six segments corresponding to left ventricular segments, and an analysis is performed. The obtained results are presented in the form of line graphs for the movement parameters of the individual segments (graph for each segment is presented in a different color) and larger regions in the course of the cardiac cycle, two-dimensional color maps of movement overlaid on the basic image, two-dimensional diagrams showing the movement of segments on the background of the whole ventricle and, finally, multiple numerical values of the individual evaluated parameters(13) (Fig. 1).

Fig. 1

A typical example of graphical presentation of basic data obtained in the analysis of longitudinal strain. Four images are presented in the figure: 1) ROI divided into segments and laid on the two-dimensional image of the left ventricle in the fourchamber apical view; 2) peak systolic strain values on the image of each segment; 3) color-coded line graphs for strain of each segment – the colors correspond to the segments in the two-dimensional image – and a white dotted graph for averaged global strain of the left ventricle; 4) a two-dimensional ribbon graph illustrating the strain of all segments during the cardiac cycle. The ribbon graph illustrates the course of strain in the following segments: basal – septal (at the top of the graph) – middle segments – apical (in the center) – up to the lateral segment located at the bottom of the graph. Ribbons corresponding to the individual segments are color-coded and separated by horizontal lines. The points of peak strain for each segment as well as the global strain are highlighted using small, white squares

10.15557_JoU.2016.0031-g001.jpg

It is also possible to calculate the ejection fraction and the stroke volume based on the combined analysis of the individual sections. Segments whose movement could not be properly traced are excluded from the analysis, which is displayed by the system on the appropriate charts. This al-lows for a manual adjustment of borders of the region of interest or rejection of inadequate sections and a reaquisition of the same view in the case of failure to achieve an adequate quality of results. Then it is possible to continue further processing of the obtained results, allowing for an assessment of the spatial differences in the kinetics of the individual myocardial regions, which is used in the diagnosis of segmental systolic dysfunction or systolic asynchrony in various diseases unrelated to focal damage, e.g. in patients after surgeries of complex congenital heart defects. The presence of characteristic changes in the curves of movement dynamics in various disease states, such as ischemic heart disease, pulmonary and systemic arterial hypertension, cardiomyopathies, etc. allows for their diagnosis, staging and monitoring of the course of treatment based on repeated STE testing.

STE – assessable basic parameters of cardiac function

Displacement (D) – a parameter specifying the distance travelled by the analyzed cardiac fragment (acoustic marker) between two subsequent image frames as well throughout the whole period of observation. The value of displacement is expressed in length units (cm)(13) (Fig. 2).

Fig. 2

Displacement (D) – the parameter specifies the distance travelled by the analyzed cardiac fragment (acoustic marker) between two subsequent image frames as well throughout the whole period of observation. The value of displacement is expressed in length units (cm). Radial strain is analyzed relative to the midpoint of the left ventricle defined by the intersection of the main axes in LV cross-section. The centripetal motion is red-coded in two-dimensional maps and identified as a positive deflection in line graphs; the centrifugal movement is blue-coded and identified as negative deflection.

10.15557_JoU.2016.0031-g002.jpg

Velocity, V – expresses the speed of the speckle moving: actual or average – in cm/s(13) (Fig. 3).

Fig. 3

Velocity (V) – expresses the speed of the speckle moving: actual or average – in cm/s. For longitudinal strain, the analysis is performed in the apex-base direction. The movement towards the apex is red-coded on two-dimensional maps and identified as positive deflection on line graphs; the movement towards the base is blue-coded and identified as negative deflection. As can be seen on the figure, an assessment of a single wall (septum in this case) or other architectural cardiac fragment, is also possible. Differences in the microcardial velocities in the individual segments are noticeable, with the highest velocities registered in the basal segment and the lowest – in the apical segment. However, maximum values are achieved at very similar time points

10.15557_JoU.2016.0031-g003.jpg

Strain (S) – describes deformation as the degree of change in the length of myocardial segment. It is a dimensionless number expressed in percentages or as a fraction of its original value. It may be positive or negative, e.g. is a 10-cm thread is stretched to a length of 12 cm, the strain is +0.2 or +20%; if the thread shrinks to 8 cm, the strain is −0.2 or −20%(13) (Fig. 4).

Fig. 4

Strain (S) – describes deformation as the degree of change in the length of myocardial segment. It is a dimensionless number expressed in percentages or as a fraction of its original value. Line graphs for the curse of longitudinal strain in the individual segments as well as averaged global strain and two-dimensional ribbon graph of strain may be seen in the figure

10.15557_JoU.2016.0031-g004.jpg

Strain rate (SR) – defines strain dynamics, i.e. change in the length per time unit, and is expressed in s−1(13) (Fig. 5).

Fig. 5

Strain rate (SR) – defines strain dynamics, i.e. change in the length per time unit, and is expressed in s−1. In addition to the graphs illustrating SR changes during cardiac cycle, a table containing SR at time points of its highest values, i.e. peak systolic velocity (peak S), the phase of rapid ventricular filling (peak E) and peak atrial systolic velocity (peak A), is shown for each of the analyzed segments

10.15557_JoU.2016.0031-g005.jpg

The movement of cardiac structures takes place in the space, therefore both the displacement and the velocity of this displacement are vectors whose spatial components should be investigated in the x, y coordinate system or relative to anatomical heart chamber coordinates, i.e. as the above discussed components: longitudinal, circular and radial, which very precisely reflect the characteristics of left ventricular myocardial mechanics. Similar principles apply to the analysis of strain and strain rate, which are also characterized by a change in the shape and location of selected myocardial areas throughout the cardiac cycle. The superiority of S and SR over D and V results from the elimination of the impact of the so called translation movements due to the dislocation of the whole organ inside the chest, and thus a change in the position of the heart with respect to the observation point – ultrasound probe, on these parameters. The inability to differentiate between active strain (caused by active contraction or relaxation) and passive strain (e.g. as a result of stretching of ventricular portion showing contractile inactivity by segments with maintained systolic function) remains a gap in the analysis of strain. Strain can be considered in relation to the individual segments (segmental strain), layers and, finally, the whole ventricle (global strain), which is calculated by averaging the values of strain in the individual segments(13).

The term LV rotation refers to a rotational movement of the left ventricle around its long axis; the value of rotation is expressed in degrees. Normally, the apex and the basis of the left ventricle rotate in opposite directions. The total range of apical and basal motion is referred to as the twist angle and also expressed in degrees. The term torsion refers to the gradient in rotation along the long LV axis and is expressed in degrees per cm (Dg/cm) (Fig. 6).

Fig. 6

The torsion angle expresses the total range of the opposing LV apical and basal motion as well as the difference (expressed in degrees) between the positions of both these segments at specific time points. As can be seen from the figure, the graph illustrating the clockwise basal left ventricle rotation is violet-coded, the opposing apical rotation in blue-coded, and the torsion angle graph is white. In this case, the maximum torsion angle is 14° (an arrow)

10.15557_JoU.2016.0031-g006.jpg

Performing the examination

After opening the optimal view, the endocardial surface of the analyzed ventricle is outlined manually, and the outline of the epicardial surface is overlaid automatically, by the system, thus forming an area intended for analysis (ROI). After manual adjustment in the width and shape of the ROI, it is automatically divided by the system into six segments corresponding to LV segments. This is followed by generation of strain curves for each of the selected segments. These curves show the strain values for the individual segments as well as global strain values calculated by averaging all the individual values. If the analysis involves all three apical views, the system shows the movement of 17 segments on a bull’s-eye display(3) (Fig. 7).

Fig. 7

A simultaneous presentation of the peak longitudinal strain values on a Bull’s Eye diagram of all left ventricular segments is a convenient way of graphical representation of systolic function. The diagram is obtained as a result of the analysis of basic apical views: four-chamber, twochamber and left ventricular long axis view. The diagram is presented in the form of a color-coded map for all segments with the values of peak systolic strain of each segment. Additionally, global strain values for each view and global strain of the whole ventricle, are provided. It is also possible to generate similar diagrams for other investigated parameters

10.15557_JoU.2016.0031-g007.jpg

It is also possible to directly measure the time-to-peak strain and the postsystolic index (the percentage of postsystolic strain compared to the peak strain of each evaluated segment) (Figs. 8 and 9). Both these parameters are useful for further analysis – for an identification and quantitative assessment of ischemic regions or regions showing asynchrony due to other reasons.

Fig. 8

The primary objective of STE is an assessment of mechanical events in different functional regions of the heart. The method allows to identify differences at time when different segments achieve the maximum strain (i.e. systole), thus providing an insight into this mechanical aspect crucial for the global mechanical function, as well as provides information on the possible uneven blood supply in the individual segments or impaired spreading of the electrical excitation throughout the working muscle. In addition to typical strain graphs, a diagram with time points at which maximum strain (time to peak longitudinal strain) was achieved in the individual segments, is also presented. Minimal variation in this parameter (318–334 ms), indicating normal excitation and ventricular contraction, may be seen

10.15557_JoU.2016.0031-g008.jpg
Fig. 9

The postsystolic index, i.e. the percentage of postsystolic strain (following systole) compared to the peak strain of each evaluated segment, is of similar importance. In the presented figure, the postsystolic index is 0 for each segment, which indicates normal mechanical function of the investigated ventricle.

10.15557_JoU.2016.0031-g009.jpg

Strain curve analysis

Heart beat is a cyclical process, therefore it seems necessary to identify the beginning of the cycle, which will be the point of reference for the measurements of changes in the length of the evaluated segments. Optimally, it should be a moment of maximum stretch of the muscle fibers, i.e. end-diastole, however, it is difficult to select an image frame that adequately corresponds to this event in echocardiographic evaluation. Usually, a moment (image frame) preceding complete closure of the mitral valve is selected as a reference point. Alternatively, the beginning of the QRS complex, the peak of R-wave with the largest size of the left ventricle and, finally, when the peak (the highest positive value on the curve) of the longitudinal global strain occurs, can be used as a reference point. None of these alternatives is optimal due to significant time differences that may occur between each of these time points in different clinical situations, such as intraventricular blocks, segmental contractility impairment, etc. In the case of combined analysis of several views, especially in the case of variable heart rate, the duration of the individual cycles can vary substantially, thus additionally hindering an optimal choice of the baseline. Therefore, images recorded at the same heart rate should be chosen for analysis, if possible(3) (Fig. 10). Time point at which muscle fibers are maximally extended, i.e. the longest, serves as a reference point for strain measurements, therefore the systolic S observed during the examination due to fiber shortening has negative values.

Fig. 10

The figure shows a dot plot of the LV longitudinal global strain. The system accepted the R-wave as the beginning of the cycle. The point 3 on the curve indicates the point of end systolic strain (ESS), and is slightly preceded by point 2 – peak systolic strain (PSS), as well as point 1 – minor positive presystolic strain (PPS). This phenomenon illustrates the importance of the proper choice of cardiac cycle onset – if QRS complex was chosen as this point, there would be no positive deflections in the curve. Furthermore, there is no postsystolic strain (PSS) on the curve

10.15557_JoU.2016.0031-g010.jpg

The end-systole is another time point requiring precise determination as this is when maximum myocardial strain, i.e. the maximum S value, is expected. This point is determined by aortic valve closure (AVC), which may be identified using pulsed Doppler, by recording several images in the longitudinal parasternal or apical view; the point of maximum GS curve deflection can also be used.

The following important events can be identified during the analysis of strain curve:

  • end-systolic strain, (ESS) – the S value at a point considered to be the end of systole (aortic valve closure);

  • peak systolic strain (PSS) – the highest S value during systole; may occur at a time point other than ESS;

  • peak positive strain, (PPS) – minor local myocardial stretching can occur during the phase of early systole in a healthy heart or as a manifestation of regional dysfunction;

  • peak strain (PS) – the highest S value, regardless of the phase of the cycle in which it occurs; its occurrence should be documented;

  • post-systolic strain (PSS) – further ventricular deformation after aortic valve closure; minor PSS can indicate the above described early-diasystolic asynchrony, major PSS can indicate impaired segmental contractility or dyssynchrony of larger areas.

Determination of the time between the beginning of the cycle and the time point at which the above described events occur for each of the evaluated segments allows for a quantitative assessment of the differences in strain dynamics in certain myocardial regions(8). Although the most efficient STE assessment is achieved for the thick-walled left ventricle, evaluation of other heart chambers, i.e. the right ventricle and both atria, is also possible under favorable conditions(2, 9).

Clinical applications

STE allows for a multifaceted insight into the systolic and diastolic myocardial function in a variety of physiological and pathological states, thus significantly extending the diagnostic possibilities of the methods used so far. For example, although the ejection fraction calculated based on the analysis of longitudinal strain components shows a good correlation with other techniques, the exceptional value of STE is the possibility of quantitative analysis of the individual segments allowing to detect early systolic dysfunction in the period when ejection fraction is still maintained(10).

Hypertension

Gradual deterioration of longitudinal and radial strain components with maintained normal circular and twisting components, which enable compensation and the maintenance of normal global systolic function, is initially observed in hypertension and progressive concentric hypertrophy. STE allows to capture the sequence of these changes in the mechanical function of the ventricle in the period preceding the occurrence of significant systolic dysfunction(11, 12).

Ischemic heart disease

Decreased longitudinal strain values are observed in patients who have not yet developed segmental disorders; decreased S is a predictive factor of ischemic cardiomyopathy. Correlation was also shown between reduced global strain values and the level of indicator enzymes and the extent of necrosis in patients in the acute phase of myocardial infarction. The value of longitudinal strain measured early after reperfusion also proved to be a prognostic factor for post-infarction remodeling as well as adverse sequelae of myocardial infarction, such as congestive heart failure and death. Finally, it was shown that the longitudinal strain correlates with the extent of necrosis ([non]transmural myocardial infarction, the number of the segments involved, extent of post-infarction scarring), assessed using MRI. The values of the individual S components indicating an improvement in myocardial function due to revascularization were determined. Furthermore, the types of postsystolic mobility (after aortic valve closure), characterized by ischemic regional systolic dysfunction of the myocardium, were identified(1317).

Valvular heart defects

A limited increase in the S value during cardiac stress test in asymptomatic patients with mitral regurgitation proved to be a prognostic factor for postoperative myocardial dysfunction(18, 19). On the other hand, a very rapid circular and radial strain normalization observed after aortic valve surgeries, is an evidence of a very high dependence of these parameters on preload and afterload conditions(20).

Heart failure

Gradual decrease in the global values of the longitudinal strain component along with increased severity of heart failure classified in accordance with the NYHA, was shown. Impairment of the circular and radial component is usually observed in the later period, in patients with class III – IV heart failure(21, 22). There is a significant impairment in the parameters characterizing left ventricular twist during heart failure. They increase in the phase of mild functional impairment, with apparent gradual normalization in the progression of diastolic dysfunction, to later decrease. Although no reduction in the range of the twist is observed in the initial phase of heart failure, a delay in the onset of untwisting occurs already in the earliest period, which is particularly manifested during physical exercise(23, 24). It is not fully understood if the increase in the twist parameters at the initial stages of diastolic failure is a mechanism compensating for the impaired relaxation or a consequence of reduced ventricular filling in early diastolic dysfunction. It was shown that the global circular component was a predictive factor for cardiovascular events in patients with heart failure and reduced ejection fraction(25). Furthermore, it was observed, that the longitudinal strain component was a better prognostic factor for the course of disease compared to ejection fraction(26).

Ventricular dyssynchrony

The phenomenon involving the loss of an appropriate sequence of ventricular contraction as well as individual ventricular components, referred to as dyssynchrony, often occurs in patients with heart failure and is considered to be an indicator of significant disease progression and poor prognosis. In the case of left bundle branch block or right ventricular stimulation, septal stimulation first occurs, resulting in a simultaneous stretching of free, unstimulated left ventricular wall, which reduces both the duration of diastole and the peak rate of pressure rise (dP/dtmax) during the isovolumetric contraction phase. A delayed contraction of the LV lateral wall dissipates the forces generated within the relaxing septum, thus decreasing the cardiac output. Uncoordinated contraction of the papillary muscles may additionally increase LV dysfunction due to developing mitral regurgitation. Dyssynchronous relaxation prolongs isovolumetric contraction, and thus additionally reduces LV filling.

There are multiple methods for echocardiographic imaging of left ventricular dyssynchrony (M-mode, STE, DTI and 3D)(2, 27). Establishing indications for resynchronization therapy and prediction of its efficacy is one of the main diagnostic goals. Presently, patient eligibility for cardiac resynchronization is based on clinical symptoms (cardiac insufficiency class III and IV according to NYHA), left ventricular function (EF <35%) and QRS duration in ECG (0.18 sec). However, despite the use of the above mentioned criteria, about onethird of patients undergoing cardiac resynchronization therapy do not respond to treatment, i.e. do not show improvement in the left ventricular function, which indicates the need to develop better qualification criteria. STE allows for an assessment of cardiac cycle subperiods and their differentiation in various ventricular regions and, particularly, it allows to demonstrate that there is a significant difference between the activation of the basal segment of the free right ventricular wall and the latest stimulated right ventricular segment(2729).

Cardiomyopathies

Characteristic impairment in all strain components is observed in patients with hypertrophic cardiomyopathy with preserved EF. Therefore the method is used for differentiation between cardiomyopathy and athlete’s heart as well as for monitoring of the course of the disease(30, 31). Characteristic abnormalities are also observed in patients with other forms of cardiomyopathy (ectatic cardiomyopathy)(32) and left ventricular non-compaction(33).

Limitations of 2D STE

Speckles can be correctly observed provided that optimal myocardial visualization is achieved. Artifacts, such as acoustic shadows or reverberations can imitate or distort the image of speckles, and thus result in underestimation of the actual degree of strain. Therefore, if strain curves seem non-physiological, an insufficient quality of signal should be taken into account and the position of the ROI adjusted or the acquisition of suboptimal echocardiogram views should be repeated. Tracing algorithms used by the system smooth out the images and use a priori assumptions of normal ventricular function, which may lead to a misdiagnosis of regional dysfunction or affect the measurements in the adjacent segments(2, 3). The use of STE for the assessment of LV rotation may be limited by the quality of the imaging of the basal segment in the short axis. This is partly due to acoustic problems associated with the deep location of the basal portion of the ventricle and, partially, due to a large sector width necessary for full visualization of this structure. The measurements are additionally hampered by partial movement of the image beyond the plane of the beam due to the lowering of the AV valve rings towards the apex during contraction. Since the degree of left ventricular rotation increases towards the apex, it is important to optimize the apical view in the short axis. The assessment of global strain may be inadequate if too many segments were excluded from the analysis due to insufficient image quality. This is particularly important in the case of local contractility impairment, when the S values are unevenly distributed(2).

STE evaluates movement with respect to a constant external observation point (probe). The advantage of this method is that it measures movement in any direction on the imaging plane, whereas DTI is limited to the measurement of a component facing the probe. This property allows for the measurements of circular and radial components, regardless of the direction of the beam. It should be noted, however, that STE is not completely free of angular dependence as the resolution of ultrasound images along the beam is better compared to transverse direction(8). Therefore, STE shows the highest precision for the analysis of movement whose direction is in line with the direction of the ultrasonic beam. As in other 2D techniques, STE accuracy depends on the quality of the image. The analysis is based on an assumption that the examined structures can be traced continuously in subsequent image frames. This assumption is often difficult to be put to practice during the whole cardiac cycle due to a significant range of heart movement in the chest(2, 3, 8).

A variety of systems for the procedure, and thus the inability to directly compare results obtained using devices from different manufacturers, represents a significant limitation. It is also one of the reasons for the difficulties in developing standards and values for different physiological states(3). Undoubtedly, the largest advantage of this method, i.e. integration of multiple aspects of cardiac mechanics in a single test, is a major challenge. Regardless of the difficulties and limitations, the new method offers an expanded insight into the mechanical cardiac function in patients after cardiac surgeries, both in the immediate postoperative period, when e.g. impairment of the longitudinal component of the right ventricular systolic function is observed, as well as during distant postoperative follow up(34). Further clinical research is needed to determine the actual value of the method in these applications. It is also desirable to standardize the technical aspects of the procedure performed using systems from different manufacturers as this will allow for a comparison of results obtained in different centers, which is currently impossible(3).

Conflict of interest

Authors do not report any financial or personal connections with other persons or organizations, which might negatively affect the contents of this publication and/or claim authorship rights to this publication.

References


  1. Leitman M,Lysyansky P,Sidenko S,Shir V,Peleg E,Binenbaum M,Two-dimensional strain – a novel software for real-time quantitative echocardiographic assessment of myocardial function J Am Soc Echocardiogr 2004 17 1021 1029
    [PUBMED] [CROSSREF]
  2. Mor-Avi V,Lang RM,Badano LP,Belohlavek M,Cardim NM,Derumeaux G,Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography J Am Soc Echocardiogr 2011 24 277 313
    [PUBMED] [CROSSREF]
  3. Voigt JU,Pedrizzetti G,Lysyansky P,Marwick TH,Houle H,Baumann R,Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging J Am Soc Echocardiogr 2015 28 183 193
    [PUBMED] [CROSSREF]
  4. Pirat B,Khoury DS,Hartley CJ,Tiller L,Rao L,Schulz DG,A novel feature-tracking echocardiographic method for the quantitation of regional myocardial function: validation in an animal model of ischemia-reperfusion J Am Coll Cardiol 2008 51 651 659
    [PUBMED] [CROSSREF]
  5. Marwick TH,Leano RL,Brown J,Sun JP,Hoffmann R,Lysyansky P,Myocardial strain measurement with 2-dimensional speckle-tracking echocardiography: definition of normal range JACC Cardiovasc Imaging 2009 2 80 84
    [PUBMED] [CROSSREF]
  6. Manovel A,Dawson D,Smith B,Nihoyannopoulos P,Assessment of left ventricular function by different speckle-tracking software Eur J Echocardiogr 2010 11 417 421
    [PUBMED] [CROSSREF]
  7. Brown J,Jenkins C,Marwick TH,Use of myocardial strain to assess global left ventricular function: a comparison with cardiac magnetic resonance and 3-dimensional echocardiography Am Heart J 2009 157 102 105
    [PUBMED] [CROSSREF]
  8. Korinek J,Kjaergaard J,Sengupta PP,Yoshifuku S,McMahon EM,Cha SS,High spatial resolution speckle tracking improves accuracy of 2-dimensional strain measurements: an update on a new method in functional echocardiography J Am Soc Echocardiogr 2007 20 165 170
    [PUBMED] [CROSSREF]
  9. Mondillo S,Galderisi M,Mele D,Cameli M,Lomoriello VS,Zacà V,Speckle-tracking echocardiography a new technique for assessing myocardial function J Ultrasound Med 2011 30 71 83
    [PUBMED] [CROSSREF]
  10. Edvardsen T,Helle-Valle T,Smiseth OA,Systolic dysfunction in heart failure with normal ejection fraction: speckle-tracking echocardiography Prog Cardiovasc Dis 2006 49 207 214
    [PUBMED] [CROSSREF]
  11. de Simone G,Devereux RB,Roman MJ,Ganau A,Saba PS,Alderman MH,Assessment of left ventricular function by the midwall fractional shortening/end-systolic stress relation in human hypertension J Am Coll Cardiol 1994 23 1444 1451
    [PUBMED] [CROSSREF]
  12. Wang J,Khoury DS,Yue Y,Torre-Amione G,Nagueh SF,Preserved left ventricular twist and circumferential deformation, but depressed longitudinal and radial deformation in patients with diastolic heart failure Eur Heart J 2008 29 1283 1289
    [PUBMED] [CROSSREF]
  13. Choi JO,Cho SW,Song YB,Cho SJ,Song BG,Lee SC,Longitudinal 2D strain at rest predicts the presence of left main and three vessel coronary artery disease in patients without regional wall motion abnormality Eur J Echocardiogr 2009 10 695 701
    [PUBMED] [CROSSREF]
  14. Sjøli B,Ørn S,Grenne B,Ihlen H,Edvardsen T,Brunvand H,Diagnostic capability and reproducibility of strain by Doppler and by speckle tracking in patients with acute myocardial infarction JACC Cardiovasc Imaging 2009 2 24 33
    [PUBMED] [CROSSREF]
  15. Park YH,Kang SJ,Song JK,Lee EY,Song JM,Kang DH,Prognostic value of longitudinal strain after primary reperfusion therapy in patients with anterior-wall acute myocardial infarction J Am Soc Echocardiogr 2008 21 262 267
    [PUBMED] [CROSSREF]
  16. Becker M,Lenzen A,Ocklenburg C,Stempel K,Kühl H,Neizel M,Myocardial deformation imaging based on ultrasonic pixel tracking to identify reversible myocardial dysfunction J Am Coll Cardiol 2008 51 1473 1481
    [PUBMED] [CROSSREF]
  17. Voigt JU,Nixdorff U,Bogdan R,Exner B,Schmiedehausen K,Platsch G,Comparison of deformation imaging and velocity imaging for detecting regional inducible ischaemia during dobutamine stress echocardiography Eur Heart J 2004 25 1517 1525
    [PUBMED] [CROSSREF]
  18. Moonen M,Lancellotti P,Zacharakis D,Pierard L,The value of 2D strain imaging during stress testing Echocardiography 2009 26 307 314
    [PUBMED] [CROSSREF]
  19. Lancellotti P,Cosyns B,Zacharakis D,Attena E,Van Camp G,Gach O,Importance of left ventricular longitudinal function and functional reserve in patients with degenerative mitral regurgitation: assessment by two-dimensional speckle tracking J Am Soc Echocardiogr 2008 21 1331 1336
    [PUBMED] [CROSSREF]
  20. Becker M,Kramann R,Dohmen G,Lückhoff A,Autschbach R,Kelm M,Impact of left ventricular loading conditions on myocardial deformation parameters: analysis of early and late changes of myocardial deformation parameters after aortic valve replacement J Am Soc Echocardiogr 2007 20 681 689
    [PUBMED] [CROSSREF]
  21. Kosmala W,Plaksej R,Strotmann JM,Weigel C,Herrmann S,Niemann M,Progression of left ventricular functional abnormalities in hypertensive patients with heart failure: an ultrasonic two-dimensional speckle tracking study J Am Soc Echocardiogr 2008 21 1309 1317
    [PUBMED] [CROSSREF]
  22. Liu YW,Tsai WC,Su CT,Lin CC,Chen JH,Evidence of left ventricular systolic dysfunction detected by automated function imaging in patients with heart failure and preserved left ventricular ejection fraction J Card Fail 2009 15 782 789
    [PUBMED] [CROSSREF]
  23. Park SJ,Miyazaki C,Bruce CJ,Ommen S,Miller FA,Oh JK,Left ventricular torsion by two-dimensional speckle tracking echocardiography in patients with diastolic dysfunction and normal ejection fraction J Am Soc Echocardiogr 2008 21 1129 1137
    [PUBMED] [CROSSREF]
  24. Wang J,Khoury DS,Yue Y,Torre-Amione G,Nagueh SF,Left ventricular untwisting rate by speckle tracking echocardiography Circulation 2007 116 2580 2586
    [PUBMED] [CROSSREF]
  25. Cho GY,Marwick TH,Kim HS,Kim MK,Hong KS,Oh DJ,Global 2-dimensional strain as a new prognosticator in patients with heart failure J Am Coll Cardiol 2009 54 618 624
    [PUBMED] [CROSSREF]
  26. Stanton T,Leano R,Marwick TH,Prediction of all-cause mortality from global longitudinal speckle strain: comparison with ejection fraction and wall motion scoring Circ Cardiovasc Imaging 2009 2 356 364
    [PUBMED] [CROSSREF]
  27. Chung ES,Leon AR,Tavazzi L,Sun JP,Nihoyannopoulos P,Merlino J,Results of the Predictors of Response to CRT (PROSPECT) trial Circulation 2008 117 2608 2616
    [PUBMED] [CROSSREF]
  28. Tanaka H,Hara H,Saba S,Gorcsan J 3rd,Prediction of response to cardiac resynchronization therapy by speckle tracking echocardiography using different software approaches J Am Soc Echocardiogr 2009 22 677 684
    [PUBMED] [CROSSREF]
  29. Nesser HJ,Winter S,Speckle tracking in the evaluation of left ventricular dyssynchrony Echocardiography 2009 26 324 336
    [PUBMED] [CROSSREF]
  30. Stefani L,Pedrizzetti G,De Luca A,Mercuri R,Innocenti G,Galanti G,Real-time evaluation of longitudinal peak systolic strain (speckle tracking measurement) in left and right ventricles of athletes Cardiovasc Ultrasound 2009 7 17
    [PUBMED] [CROSSREF]
  31. Richand V,Lafitte S,Reant P,Serri K,Lafitte M,Brette S,An ultrasound speckle tracking (two-dimensional strain) analysis of myocardial deformation in professional soccer players compared with healthy subjects and hypertrophic cardiomyopathy Am J Cardiol 2007 100 128 132
    [PUBMED] [CROSSREF]
  32. Friedberg MK,Slorach C,Relation between left ventricular regional radial function and radial wall motion abnormalities using two-dimensional speckle tracking in children with idiopathic dilated cardiomyopathy Am J Cardiol 2008 102 335 339
    [PUBMED] [CROSSREF]
  33. van Dalen BM,Caliskan K,Soliman OI,Nemes A,Vletter WB,Ten Cate FJ,Left ventricular solid body rotation in non-compaction cardiomyopathy: a potential new objective and quantitative functional diagnostic criterion? Eur J Heart Fail 2008 10 1088 1093
    [PUBMED] [CROSSREF]
  34. Pietrzak R,Werner B,Right ventricular function assessment using tissue Doppler imaging and speckle tracking echocardiography J Ultrason 2014 14 328 338
    [PUBMED] [CROSSREF]
XML PDF Share

FIGURES & TABLES

Fig. 1

A typical example of graphical presentation of basic data obtained in the analysis of longitudinal strain. Four images are presented in the figure: 1) ROI divided into segments and laid on the two-dimensional image of the left ventricle in the fourchamber apical view; 2) peak systolic strain values on the image of each segment; 3) color-coded line graphs for strain of each segment – the colors correspond to the segments in the two-dimensional image – and a white dotted graph for averaged global strain of the left ventricle; 4) a two-dimensional ribbon graph illustrating the strain of all segments during the cardiac cycle. The ribbon graph illustrates the course of strain in the following segments: basal – septal (at the top of the graph) – middle segments – apical (in the center) – up to the lateral segment located at the bottom of the graph. Ribbons corresponding to the individual segments are color-coded and separated by horizontal lines. The points of peak strain for each segment as well as the global strain are highlighted using small, white squares

Full Size   |   Slide (.pptx)

Fig. 2

Displacement (D) – the parameter specifies the distance travelled by the analyzed cardiac fragment (acoustic marker) between two subsequent image frames as well throughout the whole period of observation. The value of displacement is expressed in length units (cm). Radial strain is analyzed relative to the midpoint of the left ventricle defined by the intersection of the main axes in LV cross-section. The centripetal motion is red-coded in two-dimensional maps and identified as a positive deflection in line graphs; the centrifugal movement is blue-coded and identified as negative deflection.

Full Size   |   Slide (.pptx)

Fig. 3

Velocity (V) – expresses the speed of the speckle moving: actual or average – in cm/s. For longitudinal strain, the analysis is performed in the apex-base direction. The movement towards the apex is red-coded on two-dimensional maps and identified as positive deflection on line graphs; the movement towards the base is blue-coded and identified as negative deflection. As can be seen on the figure, an assessment of a single wall (septum in this case) or other architectural cardiac fragment, is also possible. Differences in the microcardial velocities in the individual segments are noticeable, with the highest velocities registered in the basal segment and the lowest – in the apical segment. However, maximum values are achieved at very similar time points

Full Size   |   Slide (.pptx)

Fig. 4

Strain (S) – describes deformation as the degree of change in the length of myocardial segment. It is a dimensionless number expressed in percentages or as a fraction of its original value. Line graphs for the curse of longitudinal strain in the individual segments as well as averaged global strain and two-dimensional ribbon graph of strain may be seen in the figure

Full Size   |   Slide (.pptx)

Fig. 5

Strain rate (SR) – defines strain dynamics, i.e. change in the length per time unit, and is expressed in s−1. In addition to the graphs illustrating SR changes during cardiac cycle, a table containing SR at time points of its highest values, i.e. peak systolic velocity (peak S), the phase of rapid ventricular filling (peak E) and peak atrial systolic velocity (peak A), is shown for each of the analyzed segments

Full Size   |   Slide (.pptx)

Fig. 6

The torsion angle expresses the total range of the opposing LV apical and basal motion as well as the difference (expressed in degrees) between the positions of both these segments at specific time points. As can be seen from the figure, the graph illustrating the clockwise basal left ventricle rotation is violet-coded, the opposing apical rotation in blue-coded, and the torsion angle graph is white. In this case, the maximum torsion angle is 14° (an arrow)

Full Size   |   Slide (.pptx)

Fig. 7

A simultaneous presentation of the peak longitudinal strain values on a Bull’s Eye diagram of all left ventricular segments is a convenient way of graphical representation of systolic function. The diagram is obtained as a result of the analysis of basic apical views: four-chamber, twochamber and left ventricular long axis view. The diagram is presented in the form of a color-coded map for all segments with the values of peak systolic strain of each segment. Additionally, global strain values for each view and global strain of the whole ventricle, are provided. It is also possible to generate similar diagrams for other investigated parameters

Full Size   |   Slide (.pptx)

Fig. 8

The primary objective of STE is an assessment of mechanical events in different functional regions of the heart. The method allows to identify differences at time when different segments achieve the maximum strain (i.e. systole), thus providing an insight into this mechanical aspect crucial for the global mechanical function, as well as provides information on the possible uneven blood supply in the individual segments or impaired spreading of the electrical excitation throughout the working muscle. In addition to typical strain graphs, a diagram with time points at which maximum strain (time to peak longitudinal strain) was achieved in the individual segments, is also presented. Minimal variation in this parameter (318–334 ms), indicating normal excitation and ventricular contraction, may be seen

Full Size   |   Slide (.pptx)

Fig. 9

The postsystolic index, i.e. the percentage of postsystolic strain (following systole) compared to the peak strain of each evaluated segment, is of similar importance. In the presented figure, the postsystolic index is 0 for each segment, which indicates normal mechanical function of the investigated ventricle.

Full Size   |   Slide (.pptx)

Fig. 10

The figure shows a dot plot of the LV longitudinal global strain. The system accepted the R-wave as the beginning of the cycle. The point 3 on the curve indicates the point of end systolic strain (ESS), and is slightly preceded by point 2 – peak systolic strain (PSS), as well as point 1 – minor positive presystolic strain (PPS). This phenomenon illustrates the importance of the proper choice of cardiac cycle onset – if QRS complex was chosen as this point, there would be no positive deflections in the curve. Furthermore, there is no postsystolic strain (PSS) on the curve

Full Size   |   Slide (.pptx)

REFERENCES

  1. Leitman M,Lysyansky P,Sidenko S,Shir V,Peleg E,Binenbaum M,Two-dimensional strain – a novel software for real-time quantitative echocardiographic assessment of myocardial function J Am Soc Echocardiogr 2004 17 1021 1029
    [PUBMED] [CROSSREF]
  2. Mor-Avi V,Lang RM,Badano LP,Belohlavek M,Cardim NM,Derumeaux G,Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography J Am Soc Echocardiogr 2011 24 277 313
    [PUBMED] [CROSSREF]
  3. Voigt JU,Pedrizzetti G,Lysyansky P,Marwick TH,Houle H,Baumann R,Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging J Am Soc Echocardiogr 2015 28 183 193
    [PUBMED] [CROSSREF]
  4. Pirat B,Khoury DS,Hartley CJ,Tiller L,Rao L,Schulz DG,A novel feature-tracking echocardiographic method for the quantitation of regional myocardial function: validation in an animal model of ischemia-reperfusion J Am Coll Cardiol 2008 51 651 659
    [PUBMED] [CROSSREF]
  5. Marwick TH,Leano RL,Brown J,Sun JP,Hoffmann R,Lysyansky P,Myocardial strain measurement with 2-dimensional speckle-tracking echocardiography: definition of normal range JACC Cardiovasc Imaging 2009 2 80 84
    [PUBMED] [CROSSREF]
  6. Manovel A,Dawson D,Smith B,Nihoyannopoulos P,Assessment of left ventricular function by different speckle-tracking software Eur J Echocardiogr 2010 11 417 421
    [PUBMED] [CROSSREF]
  7. Brown J,Jenkins C,Marwick TH,Use of myocardial strain to assess global left ventricular function: a comparison with cardiac magnetic resonance and 3-dimensional echocardiography Am Heart J 2009 157 102 105
    [PUBMED] [CROSSREF]
  8. Korinek J,Kjaergaard J,Sengupta PP,Yoshifuku S,McMahon EM,Cha SS,High spatial resolution speckle tracking improves accuracy of 2-dimensional strain measurements: an update on a new method in functional echocardiography J Am Soc Echocardiogr 2007 20 165 170
    [PUBMED] [CROSSREF]
  9. Mondillo S,Galderisi M,Mele D,Cameli M,Lomoriello VS,Zacà V,Speckle-tracking echocardiography a new technique for assessing myocardial function J Ultrasound Med 2011 30 71 83
    [PUBMED] [CROSSREF]
  10. Edvardsen T,Helle-Valle T,Smiseth OA,Systolic dysfunction in heart failure with normal ejection fraction: speckle-tracking echocardiography Prog Cardiovasc Dis 2006 49 207 214
    [PUBMED] [CROSSREF]
  11. de Simone G,Devereux RB,Roman MJ,Ganau A,Saba PS,Alderman MH,Assessment of left ventricular function by the midwall fractional shortening/end-systolic stress relation in human hypertension J Am Coll Cardiol 1994 23 1444 1451
    [PUBMED] [CROSSREF]
  12. Wang J,Khoury DS,Yue Y,Torre-Amione G,Nagueh SF,Preserved left ventricular twist and circumferential deformation, but depressed longitudinal and radial deformation in patients with diastolic heart failure Eur Heart J 2008 29 1283 1289
    [PUBMED] [CROSSREF]
  13. Choi JO,Cho SW,Song YB,Cho SJ,Song BG,Lee SC,Longitudinal 2D strain at rest predicts the presence of left main and three vessel coronary artery disease in patients without regional wall motion abnormality Eur J Echocardiogr 2009 10 695 701
    [PUBMED] [CROSSREF]
  14. Sjøli B,Ørn S,Grenne B,Ihlen H,Edvardsen T,Brunvand H,Diagnostic capability and reproducibility of strain by Doppler and by speckle tracking in patients with acute myocardial infarction JACC Cardiovasc Imaging 2009 2 24 33
    [PUBMED] [CROSSREF]
  15. Park YH,Kang SJ,Song JK,Lee EY,Song JM,Kang DH,Prognostic value of longitudinal strain after primary reperfusion therapy in patients with anterior-wall acute myocardial infarction J Am Soc Echocardiogr 2008 21 262 267
    [PUBMED] [CROSSREF]
  16. Becker M,Lenzen A,Ocklenburg C,Stempel K,Kühl H,Neizel M,Myocardial deformation imaging based on ultrasonic pixel tracking to identify reversible myocardial dysfunction J Am Coll Cardiol 2008 51 1473 1481
    [PUBMED] [CROSSREF]
  17. Voigt JU,Nixdorff U,Bogdan R,Exner B,Schmiedehausen K,Platsch G,Comparison of deformation imaging and velocity imaging for detecting regional inducible ischaemia during dobutamine stress echocardiography Eur Heart J 2004 25 1517 1525
    [PUBMED] [CROSSREF]
  18. Moonen M,Lancellotti P,Zacharakis D,Pierard L,The value of 2D strain imaging during stress testing Echocardiography 2009 26 307 314
    [PUBMED] [CROSSREF]
  19. Lancellotti P,Cosyns B,Zacharakis D,Attena E,Van Camp G,Gach O,Importance of left ventricular longitudinal function and functional reserve in patients with degenerative mitral regurgitation: assessment by two-dimensional speckle tracking J Am Soc Echocardiogr 2008 21 1331 1336
    [PUBMED] [CROSSREF]
  20. Becker M,Kramann R,Dohmen G,Lückhoff A,Autschbach R,Kelm M,Impact of left ventricular loading conditions on myocardial deformation parameters: analysis of early and late changes of myocardial deformation parameters after aortic valve replacement J Am Soc Echocardiogr 2007 20 681 689
    [PUBMED] [CROSSREF]
  21. Kosmala W,Plaksej R,Strotmann JM,Weigel C,Herrmann S,Niemann M,Progression of left ventricular functional abnormalities in hypertensive patients with heart failure: an ultrasonic two-dimensional speckle tracking study J Am Soc Echocardiogr 2008 21 1309 1317
    [PUBMED] [CROSSREF]
  22. Liu YW,Tsai WC,Su CT,Lin CC,Chen JH,Evidence of left ventricular systolic dysfunction detected by automated function imaging in patients with heart failure and preserved left ventricular ejection fraction J Card Fail 2009 15 782 789
    [PUBMED] [CROSSREF]
  23. Park SJ,Miyazaki C,Bruce CJ,Ommen S,Miller FA,Oh JK,Left ventricular torsion by two-dimensional speckle tracking echocardiography in patients with diastolic dysfunction and normal ejection fraction J Am Soc Echocardiogr 2008 21 1129 1137
    [PUBMED] [CROSSREF]
  24. Wang J,Khoury DS,Yue Y,Torre-Amione G,Nagueh SF,Left ventricular untwisting rate by speckle tracking echocardiography Circulation 2007 116 2580 2586
    [PUBMED] [CROSSREF]
  25. Cho GY,Marwick TH,Kim HS,Kim MK,Hong KS,Oh DJ,Global 2-dimensional strain as a new prognosticator in patients with heart failure J Am Coll Cardiol 2009 54 618 624
    [PUBMED] [CROSSREF]
  26. Stanton T,Leano R,Marwick TH,Prediction of all-cause mortality from global longitudinal speckle strain: comparison with ejection fraction and wall motion scoring Circ Cardiovasc Imaging 2009 2 356 364
    [PUBMED] [CROSSREF]
  27. Chung ES,Leon AR,Tavazzi L,Sun JP,Nihoyannopoulos P,Merlino J,Results of the Predictors of Response to CRT (PROSPECT) trial Circulation 2008 117 2608 2616
    [PUBMED] [CROSSREF]
  28. Tanaka H,Hara H,Saba S,Gorcsan J 3rd,Prediction of response to cardiac resynchronization therapy by speckle tracking echocardiography using different software approaches J Am Soc Echocardiogr 2009 22 677 684
    [PUBMED] [CROSSREF]
  29. Nesser HJ,Winter S,Speckle tracking in the evaluation of left ventricular dyssynchrony Echocardiography 2009 26 324 336
    [PUBMED] [CROSSREF]
  30. Stefani L,Pedrizzetti G,De Luca A,Mercuri R,Innocenti G,Galanti G,Real-time evaluation of longitudinal peak systolic strain (speckle tracking measurement) in left and right ventricles of athletes Cardiovasc Ultrasound 2009 7 17
    [PUBMED] [CROSSREF]
  31. Richand V,Lafitte S,Reant P,Serri K,Lafitte M,Brette S,An ultrasound speckle tracking (two-dimensional strain) analysis of myocardial deformation in professional soccer players compared with healthy subjects and hypertrophic cardiomyopathy Am J Cardiol 2007 100 128 132
    [PUBMED] [CROSSREF]
  32. Friedberg MK,Slorach C,Relation between left ventricular regional radial function and radial wall motion abnormalities using two-dimensional speckle tracking in children with idiopathic dilated cardiomyopathy Am J Cardiol 2008 102 335 339
    [PUBMED] [CROSSREF]
  33. van Dalen BM,Caliskan K,Soliman OI,Nemes A,Vletter WB,Ten Cate FJ,Left ventricular solid body rotation in non-compaction cardiomyopathy: a potential new objective and quantitative functional diagnostic criterion? Eur J Heart Fail 2008 10 1088 1093
    [PUBMED] [CROSSREF]
  34. Pietrzak R,Werner B,Right ventricular function assessment using tissue Doppler imaging and speckle tracking echocardiography J Ultrason 2014 14 328 338
    [PUBMED] [CROSSREF]

EXTRA FILES

COMMENTS